The Evolution of AI in Clinical Settings: ChatGPT Training

By Sumona Bose

March 12, 2024

Introduction

ChatGPT (Generative Pre-trained Transformer) stands as a prominent Artificial Intelligence (AI) language model rooted in the transformer architecture. This neural network excels in processing sequential data, particularly text, through extensive exposure to vast text datasets. The training process involves pattern recognition and relationship establishment within the data, culminating in the generation of coherent language. Fine-tuning, complemented by human input and reinforcement learning from human feedback (RLHP), refines ChatGPT’s responses to various queries. ChatGPT’s most recent development is its GPT-4, the large language model (LLM) has been updated to understand, interpret and analyse images. These kind of developments indicate the evolution of AI in clinical settings.

The potential of GPT-4 in Medical Image Analysis

The potential impact on medical diagnostics remains significant. By leveraging image analysis, GPT-4 could enhance medical professionals’ diagnostic accuracy and speed, particularly in underserved regions. Evaluating GPT-4’s diagnostic prowess involved exposing it to diverse medical imaging modalities, from X-rays to Magnetic Resonance Imaging (MRI) and Optical coherence tomography (OCT) images. As demonstrated in Figure 1, GPT-4 can respond to prompts which specifically direct queries on interpreting medical images such as MRIs and OCTs.

Enhancing GPT-4’s image analysis proficiency necessitates further training on extensive medical image datasets to grasp nuanced patterns and correlations crucial for accurate diagnoses. While GPT-4 boasts a myriad of capabilities, it also harbours limitations, notably its reliance on training data patterns. This reliance implies potential performance disparities when faced with novel challenges or data misaligned with its training corpus. Addressing AI biases demands the incorporation of diverse datasets to fortify the model’s adaptability and mitigate predispositions in decision-making processes.

Figure 1: GPT-4 responses to two prompts with different links of the same image

Challenges and Considerations in GPT-4 Utilisation

GPT-4’s potential limitations include contextual understanding gaps, leading to potential misconceptions and inaccuracies, especially in technical domains. Users must verify information independently due to potential unreliability. The opaque nature of AI models demands cautious interpretation of outputs to avoid errors. In dynamic fields like healthcare, outdated or erroneous responses may occur. Furthermore, privacy concerns arise from potential data collection practices. Competing LLMs like Google’s Gemini (formerly Bard) and Meta’s LlaMa 2 with image analysis capabilities signal a growing landscape.Future efforts should focus on equitable and accountable LLM development through open-source codes and oversight mechanisms.

Conclusion

While GPT-4 showcases remarkable advancements in automated medical image analysis, challenges such as contextual understanding, reliability, and privacy concerns persist. As the field evolves with new models like Gemini and LlaMa 2, prioritising accountability and equity through open-source practices is crucial for the future of AI-driven healthcare innovations. Would you use GPT-4 to interpret your medical images?

Reference url

Recent Posts

CTX310 Lipid Disorder: Phase 1 Trial Shows Promising LDL and Triglyceride Reductions

By HEOR Staff Writer

November 10, 2025

CTX310 Breakthrough in Lipid Disorder Treatment CTX310 is a significant advancement as the first-in-human Phase 1 trial of this CRISPR-Cas9 gene-editing therapy...
Koselugo EU Approval: A Milestone in Treating Plexiform Neurofibromas for Adult NF1 Patients

By HEOR Staff Writer

November 7, 2025

European Commission Approves Koselugo for Adult NF1 Patients The European Commission has granted approval for Koselugo (selumetinib), an oral MEK inhibitor developed by Alexion, AstraZeneca Rare Disease, to treat symptomatic, inoperable plexiform neurofibromas in adult patients with neu...
Eloralintide Obesity Treatment: Phase 2 Trial Reveals Significant Weight Loss Potential
Are you wondering about the latest eloralintide obesity treatment options? Eloralintide, a selective amylin receptor agonist, has shown promising results in managing obesity. In a recent phase 2 trial, it led to significant weight loss of up to 20% over 48 weeks in adults with obesity or overweig...