The Evolution of AI in Clinical Settings: ChatGPT Training

By Sumona Bose

March 12, 2024

Introduction

ChatGPT (Generative Pre-trained Transformer) stands as a prominent Artificial Intelligence (AI) language model rooted in the transformer architecture. This neural network excels in processing sequential data, particularly text, through extensive exposure to vast text datasets. The training process involves pattern recognition and relationship establishment within the data, culminating in the generation of coherent language. Fine-tuning, complemented by human input and reinforcement learning from human feedback (RLHP), refines ChatGPT’s responses to various queries. ChatGPT’s most recent development is its GPT-4, the large language model (LLM) has been updated to understand, interpret and analyse images. These kind of developments indicate the evolution of AI in clinical settings.

The potential of GPT-4 in Medical Image Analysis

The potential impact on medical diagnostics remains significant. By leveraging image analysis, GPT-4 could enhance medical professionals’ diagnostic accuracy and speed, particularly in underserved regions. Evaluating GPT-4’s diagnostic prowess involved exposing it to diverse medical imaging modalities, from X-rays to Magnetic Resonance Imaging (MRI) and Optical coherence tomography (OCT) images. As demonstrated in Figure 1, GPT-4 can respond to prompts which specifically direct queries on interpreting medical images such as MRIs and OCTs.

Enhancing GPT-4’s image analysis proficiency necessitates further training on extensive medical image datasets to grasp nuanced patterns and correlations crucial for accurate diagnoses. While GPT-4 boasts a myriad of capabilities, it also harbours limitations, notably its reliance on training data patterns. This reliance implies potential performance disparities when faced with novel challenges or data misaligned with its training corpus. Addressing AI biases demands the incorporation of diverse datasets to fortify the model’s adaptability and mitigate predispositions in decision-making processes.

Figure 1: GPT-4 responses to two prompts with different links of the same image

Challenges and Considerations in GPT-4 Utilisation

GPT-4’s potential limitations include contextual understanding gaps, leading to potential misconceptions and inaccuracies, especially in technical domains. Users must verify information independently due to potential unreliability. The opaque nature of AI models demands cautious interpretation of outputs to avoid errors. In dynamic fields like healthcare, outdated or erroneous responses may occur. Furthermore, privacy concerns arise from potential data collection practices. Competing LLMs like Google’s Gemini (formerly Bard) and Meta’s LlaMa 2 with image analysis capabilities signal a growing landscape.Future efforts should focus on equitable and accountable LLM development through open-source codes and oversight mechanisms.

Conclusion

While GPT-4 showcases remarkable advancements in automated medical image analysis, challenges such as contextual understanding, reliability, and privacy concerns persist. As the field evolves with new models like Gemini and LlaMa 2, prioritising accountability and equity through open-source practices is crucial for the future of AI-driven healthcare innovations. Would you use GPT-4 to interpret your medical images?

Reference url

Recent Posts

defunding scientific research
      

Defunding Scientific Research: Implications and Misconceptions in Gawande’s Analysis of Harvard Funding Cuts

🚨 What happens when scientific research funding is threatened?

In his thought-provoking article, Atul Gawande highlights the dire implications of proposed federal funding cuts to elite institutions like Harvard. He argues that such actions could devastate not just innovation, but also patient care and public health across the nation.

Explore the complexities of research funding and the potential ripple effects on America’s scientific landscape. Don’t miss out on these critical insights!

#SyenzaNews #HealthcareInnovation #HealthEconomics #MarketAccess

perioperative immunotherapy bladder cancer
       

FDA Approves Perioperative Immunotherapy for Bladder Cancer: A Breakthrough in MIBC Treatment

🚀 Are we witnessing a new era in bladder cancer treatment?

The FDA’s recent approval of durvalumab as the first perioperative immunotherapy for muscle-invasive bladder cancer (MIBC) could revolutionize outcomes for patients facing this formidable diagnosis. With significant improvements in event-free survival and overall survival over standard chemotherapy, this groundbreaking treatment offers new hope 🎉.

Curious about how this could shape the future of cancer care? Dive into the full article to uncover the potential impacts on clinical practice and health economics.

#SyenzaNews #oncology #HealthEconomics

value-based drug pricing
      

Optimizing Value-Based Drug Pricing in Japan with MARIE Framework

🔍 Are we pricing drugs based on true value?

The introduction of the MARIE framework in Japan revolutionizes value-based drug pricing by considering not just costs, but the actual benefits drugs provide to patients and society. This innovative approach significantly adjusts prices based on updated clinical data and allows for more equitable access to therapies.

Curious about how MARIE can reshape drug pricing and pharmaceutical innovation? Dive into the full article for insights!

#SyenzaNews #HealthEconomics #MarketAccess

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2025 Syenza™. All rights reserved.