AI in Population Health: Exploring Sub-Fields and Applications

By Sumona Bose

February 1, 2024


Artificial intelligence (AI) has influenced various aspects of healthcare, from genetics research to clinical care. However, its adoption in population health settings has been slower. In this article, we aim to shed light on different sub-fields of AI and their potential applications in population health, emphasizing the need for decision-makers to understand AI concepts. By exploring these sub-fields, we can harness the power of AI to make more informed decisions and improve public health outcomes. This article will explore the sub fields of AI in population and public health.

Understanding AI Concepts

AI methods offer the ability to analyze vast amounts of complex and diverse data, providing valuable insights and contributing to sense making. This capacity makes AI particularly appealing for health applications, including personalized medicine. However, the term “AI” encompasses various approaches and fields, leading to confusion. To bridge this knowledge gap, we will outline different AI sub-fields and their relevance to population health.

Exploring AI Sub-Fields

Machine Learning

Machine learning, a widely used sub-field of AI, has found success in clinical problem-solving. However, its application in population health and public health has been limited. Machine learning and traditional statistical approaches have the potential to leverage big data to understand and predict healthcare and population health outcomes. However, caution must be exercised to avoid biased data and unequal access to technology, which can perpetuate health inequities.

Population Health & Responsible AI
Figure 1: Population Health and Responsible AI

Natural Language Processing (NLP)

NLP focuses on understanding and processing human language. In population health, NLP can be used to analyze large volumes of text data, such as electronic health records and social media posts, to identify patterns and trends. This can aid in disease surveillance, early detection, and monitoring of public health concerns.

Computer Vision

Computer vision involves the interpretation of visual data, such as medical images and videos. In population health, computer vision can assist in the analysis of imaging data for disease diagnosis and monitoring. It can also be used for surveillance purposes, such as monitoring social distancing compliance during pandemics.

Predictive Analytics

Predictive analytics utilizes historical data to make predictions about future events. In population health, predictive analytics can help identify individuals at risk of certain diseases or adverse health outcomes. This information can guide targeted interventions and resource allocation to prevent or mitigate health issues.


The field of AI holds immense potential for improving population health outcomes. While AI has already made significant advancements in genetics research and clinical care, its application in population health settings has been slower. By understanding the various sub-fields of AI and their relevance to population health, decision-makers can harness the power of AI to make more informed decisions and address public health challenges. Exploring sub fields of AI in population health makes for a necessary discourse to positively intervene in population health.

Reference url

Recent Posts

South African National Health Insurance Bill

High Court on South African National Health Insurance Bill

📢Latest update on the NHI! 📢 Dive into our latest piece on the judicial review of the South African National Health Insurance Bill. Learn about the intriguing case and its implications on the healthcare industry. 🏛️💼💡 #HealthcarePolicy #LegalReview #NationalHealthInsuranceBill

Global Perspective on Orphan Medicines

A Global Perspective on Orphan Medicines and Rare Diseases

Discover the global perspective on orphan medicines and their role in treating rare diseases. Learn about the unique challenges and incentives in their development. 🌍💊 #OrphanMedicines #RareDiseases #HealthcareInnovation #RareDiseaseDay. Read more here


The Impact of Universal Health Coverage on Poverty Reduction in Low and Middle-Income Countries

📚 New research findings alert! 🚨 A recent study shows that increasing coverage of maternal, child and inpatient services is associated with reduced poverty in low and middle-income countries. 💡 This supports pro-poor approaches towards Universal Health Coverage. 🌍 Let’s work together to ensure #HealthForAll and #EndPoverty. Read more here 📖 #UHC #GlobalHealth #HealthEquity

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.



1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA



© 2024 Syenza™. All rights reserved.