Evaluating Machine Learning in Health Economics

By Sumona Bose

January 22, 2024

Introduction

Advances in Machine Learning and Artificial Intelligence (AI) have the potential to transfigure the healthcare industry, offering tremendous benefits to patients. While predictive analytics using ML are already widely used in healthcare operations and care delivery, there is growing interest in exploring how ML can be applied to Health Economics and Outcomes Research (HEOR). The International Society for Pharmacoeconomics and Outcomes Research (ISPOR) established an emerging good practices task force specifically focused on the application of ML in HEOR. The task force identified five key areas where ML could enhance HEOR methodologies.

Machine Learning Functions

The first area is cohort selection, where ML can help identify samples with greater specificity in terms of inclusion criteria. This can lead to more accurate and targeted research, ultimately improving patient outcomes. The second area is the identification of independent predictors and covariates of health outcomes. ML algorithms can analyze large datasets to identify factors that contribute to specific health outcomes, providing valuable insights for researchers and policymakers.

Predictive analytics of health outcomes is another area where ML can make a significant impact. ML algorithms can analyze high-cost or life-threatening health outcomes, helping healthcare providers and policymakers make informed decisions and allocate resources effectively. The fourth area is causal inference, where ML methods such as targeted maximum likelihood estimation or double-debiased estimation can help produce reliable evidence more quickly. This can accelerate the research process and enable faster decision-making.

HEOR and Machine Learning: PALISADE Checklist

ML can be applied to the development of economic models, reducing structural, parameter, and sampling uncertainty in cost-effectiveness analysis. By leveraging ML algorithms, researchers can improve the accuracy and reliability of economic models, leading to more robust and informed decision-making. Overall, ML facilitates HEOR through the meaningful and efficient analysis of big data. However, there is a need for transparency in how ML methods deliver solutions, particularly in unsupervised circumstances. The lack of transparency increases the risk to providers and decision-makers when using ML results.

To address this issue, the task force developed the PALISADE Checklist. This checklist serves as a guide for balancing the potential applications of ML with the need for transparency in methods development and findings. By following this checklist, researchers and decision-makers can ensure that ML solutions are both useful and transparent in healthcare analytics.

Conclusion

As AI continues to advance, it is crucial for the healthcare industry to embrace these technologies and leverage their potential to improve patient outcomes and drive value-based healthcare. By incorporating ML into HEOR methodologies, researchers can gain valuable insights, enhance decision-making, and strengthen healthcare systems.

Reference url

Recent Posts

prior authorization reforms
     

Streamlining Prior Authorization Reforms: Impacts and Insights for HEOR

🚀 Are prior authorizations stalling care delivery in the U.S. healthcare system?

The HHS has launched an ambitious collaboration with major insurers to reform prior authorization processes across Medicare Advantage, Medicaid, and commercial plans. With a goal to standardize submissions by 2027 and significantly reduce requirements by 2026, this initiative promises to accelerate care decisions and enhance transparency.

Dive into the details of these pivotal reforms and discover their potential to streamline healthcare and improve patient outcomes.

#SyenzaNews #HealthcareInnovation #healthcare #healthcarepolicy

private health funding
    

Private Health Funding Under South Africa’s National Health Insurance Act

🚀 Update on NHI in South Africa.

In their insightful article, Solanki et al. discuss the complexities of private health funding amidst the nation’s National Health Insurance Act. They discuss two key scenarios: a passive approach that risks the sustainability of the private sector and an active reform strategy that could ensure a smoother transition to universal coverage.

Curious about how these strategies could reshape healthcare access and costs in South Africa? Don’t miss out on this critical analysis!

#SyenzaNews #HealthEconomics #HealthcarePolicy

drug price transparency
     

Impending Net Drug Price Transparency Regulation in the U.S.

💡 Are you ready for a potential game-changer in drug pricing transparency?

CMS Administrator Mehmet Oz has hinted at a new rule aimed at enforcing stricter disclosures for drug prices, requiring healthcare companies to reveal actual transaction costs. This could reshape how price transparency is managed across the industry and challenge pharmacy benefit managers to rethink rebate practices.

Curious about how this will impact healthcare economics and what it means for drug affordability? Dive into the article for all the insights!

#SyenzaNews #healthcare #HealthEconomics

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2025 Syenza™. All rights reserved.