AI in Population Health: Exploring Sub-Fields and Applications

By Sumona Bose

February 1, 2024

Introduction

Artificial intelligence (AI) has influenced various aspects of healthcare, from genetics research to clinical care. However, its adoption in population health settings has been slower. In this article, we aim to shed light on different sub-fields of AI and their potential applications in population health, emphasizing the need for decision-makers to understand AI concepts. By exploring these sub-fields, we can harness the power of AI to make more informed decisions and improve public health outcomes. This article will explore the sub fields of AI in population and public health.

Understanding AI Concepts

AI methods offer the ability to analyze vast amounts of complex and diverse data, providing valuable insights and contributing to sense making. This capacity makes AI particularly appealing for health applications, including personalized medicine. However, the term “AI” encompasses various approaches and fields, leading to confusion. To bridge this knowledge gap, we will outline different AI sub-fields and their relevance to population health.

Exploring AI Sub-Fields

Machine Learning

Machine learning, a widely used sub-field of AI, has found success in clinical problem-solving. However, its application in population health and public health has been limited. Machine learning and traditional statistical approaches have the potential to leverage big data to understand and predict healthcare and population health outcomes. However, caution must be exercised to avoid biased data and unequal access to technology, which can perpetuate health inequities.

Population Health & Responsible AI
Figure 1: Population Health and Responsible AI

Natural Language Processing (NLP)

NLP focuses on understanding and processing human language. In population health, NLP can be used to analyze large volumes of text data, such as electronic health records and social media posts, to identify patterns and trends. This can aid in disease surveillance, early detection, and monitoring of public health concerns.

Computer Vision

Computer vision involves the interpretation of visual data, such as medical images and videos. In population health, computer vision can assist in the analysis of imaging data for disease diagnosis and monitoring. It can also be used for surveillance purposes, such as monitoring social distancing compliance during pandemics.

Predictive Analytics

Predictive analytics utilizes historical data to make predictions about future events. In population health, predictive analytics can help identify individuals at risk of certain diseases or adverse health outcomes. This information can guide targeted interventions and resource allocation to prevent or mitigate health issues.

Conclusion

The field of AI holds immense potential for improving population health outcomes. While AI has already made significant advancements in genetics research and clinical care, its application in population health settings has been slower. By understanding the various sub-fields of AI and their relevance to population health, decision-makers can harness the power of AI to make more informed decisions and address public health challenges. Exploring sub fields of AI in population health makes for a necessary discourse to positively intervene in population health.

Reference url

Recent Posts

Obesity Medication Guidelines: Evidence-Based Approaches to Effective Treatment

By João L. Carapinha

January 15, 2026

Obesity Medication Guidelines: ADA's Evidence-Based Framework The American Diabetes Association (ADA) obesity medication guidelines, recently published, outline medications as integral to comprehensive obesity management f...
Equity-Based Pricing: Enhancing Value in Primary Care through Socioeconomic Considerations
Embedding Equity in Primary Care Incentives In the English National Health Service (NHS), equity-based pricing offers a promising way to refine value-based mechanisms like the Quality and Outcomes Framework (QOF), a pay-for-performance sc...
β-Blockers Myocardial Infarction: Reevaluating Their Role in Patients with Preserved Ejection Fra...

By HEOR Staff Writer

January 14, 2026

β-blockers after myocardial infarction in patients with preserved ejection fraction (LVEF ≥50%) do not significantly improve key outcomes like mortality or recurrent events. This addresses a common query: How effective are β-blockers in post-heart attack care for those with normal heart function?...