AI in Population Health: Exploring Sub-Fields and Applications

By Sumona Bose

February 1, 2024

Introduction

Artificial intelligence (AI) has influenced various aspects of healthcare, from genetics research to clinical care. However, its adoption in population health settings has been slower. In this article, we aim to shed light on different sub-fields of AI and their potential applications in population health, emphasizing the need for decision-makers to understand AI concepts. By exploring these sub-fields, we can harness the power of AI to make more informed decisions and improve public health outcomes. This article will explore the sub fields of AI in population and public health.

Understanding AI Concepts

AI methods offer the ability to analyze vast amounts of complex and diverse data, providing valuable insights and contributing to sense making. This capacity makes AI particularly appealing for health applications, including personalized medicine. However, the term “AI” encompasses various approaches and fields, leading to confusion. To bridge this knowledge gap, we will outline different AI sub-fields and their relevance to population health.

Exploring AI Sub-Fields

Machine Learning

Machine learning, a widely used sub-field of AI, has found success in clinical problem-solving. However, its application in population health and public health has been limited. Machine learning and traditional statistical approaches have the potential to leverage big data to understand and predict healthcare and population health outcomes. However, caution must be exercised to avoid biased data and unequal access to technology, which can perpetuate health inequities.

Population Health & Responsible AI
Figure 1: Population Health and Responsible AI

Natural Language Processing (NLP)

NLP focuses on understanding and processing human language. In population health, NLP can be used to analyze large volumes of text data, such as electronic health records and social media posts, to identify patterns and trends. This can aid in disease surveillance, early detection, and monitoring of public health concerns.

Computer Vision

Computer vision involves the interpretation of visual data, such as medical images and videos. In population health, computer vision can assist in the analysis of imaging data for disease diagnosis and monitoring. It can also be used for surveillance purposes, such as monitoring social distancing compliance during pandemics.

Predictive Analytics

Predictive analytics utilizes historical data to make predictions about future events. In population health, predictive analytics can help identify individuals at risk of certain diseases or adverse health outcomes. This information can guide targeted interventions and resource allocation to prevent or mitigate health issues.

Conclusion

The field of AI holds immense potential for improving population health outcomes. While AI has already made significant advancements in genetics research and clinical care, its application in population health settings has been slower. By understanding the various sub-fields of AI and their relevance to population health, decision-makers can harness the power of AI to make more informed decisions and address public health challenges. Exploring sub fields of AI in population health makes for a necessary discourse to positively intervene in population health.

Reference url

Recent Posts

Urgent Care Effectiveness: Exploring Canadian Centre Models and Health System Impacts

By João L. Carapinha

August 12, 2025

Urgent care effectiveness has become a central question for Canada’s health systems as policymakers look for tangible ways to relieve emergency department (ED) overcrowding and improve timely access to care. Many people want to know: Do urgent care centres actually help reduce pressure on hospita...
France’s HAS Denies Ribociclib Breast Cancer Therapy for Early HR+/HER2- Patients
Ribociclib breast cancer therapy has been closely scrutinized as an adjuvant treatment for patients with early-stage HR-positive, HER2-negative breast cancer at high risk of recurrence. If you’re wondering, “Why did France’s HAS reject reimbursement for ribociclib in this setting, and how might i...
FDA Approved Eye Drops: Lenz Therapeutics Launches VIZZ for Presbyopia Treatment

By Staff Writer

August 11, 2025

LENZ Therapeutics has secured FDA approval for VIZZ (aceclidine ophthalmic solution) 1.44%. These are the first FDA-approved eye drops designed to treat presbyopia in adults. They offer a once-daily improvement of near vision for up to 10 hours, and target approximately 128 million affected Ameri...