Use of AI in Genetic Diagnosis: Identifying Rare Diseases

By Staff Writer

May 17, 2024

Introduction

Every year, numerous children are born with severe genetic disorders, with a considerable number remaining undiagnosed due to the complexity of identifying causative genetic variants. The emergence of artificial intelligence (AI) in genetic diagnosis offers a promising avenue for addressing these challenges, pushing the boundaries of precision medicine.

Understanding the Diagnostic Challenge

Genetic disorders, often resulting from single-gene mutations, present a significant diagnostic challenge. Despite modern bioinformatics tools, the process of pinpointing the exact variant responsible for a disease remains a complex task, demanding both time and extensive knowledge. Despite the advent of sophisticated bioinformatics tools, the diagnostic rate for genetic disorders hovers between 30 and 40%.  This complexity underscores the need for more efficient diagnostic methodologies.

Figure 1. Schematic Diagram Illustrating the Reanalysis Process

The Power of AI in Genetic Analysis

AI systems, such as AI-MARRVEL (AIM), have been developed to enhance the diagnostic process for Mendelian disorders. These systems leverage patient clinical features and sequencing profiles, offering a sophisticated approach to variant prioritisation. AIM, in particular, is trained on a more than 3.5 million variant data points and curated by certified experts, embodying a significant leap forward in genetic diagnostics.

Navigating the Limitations of Current Tools

While AI systems like AIM mark a significant advancement, they are not without limitations. The inability to analyse certain types of genetic variations and a focus on coding variants restrict their scope. However, these challenges present opportunities for further innovation and integration of more comprehensive analytical tools.

The Future of Genetic Diagnosis

AI in genetic diagnosis is not just a theoretical concept but a practical tool with a web interface for real-world application. It has the potential to truly enhance the periodic reanalysis of undiagnosed cases, making it a feasible and cost-effective option for many. As AI continues to evolve, its integration into clinical practice promises to enhance patient outcomes and set a new norm in genetic medicine.

Reference url

Recent Posts

TAVI Cost-Effectiveness in Brazil: Balancing Coverage Expansion and Economic Viability

By Staff Writer

August 21, 2025

The focus on TAVI cost-effectiveness Brazil has gained attention. The country is assessing the expansion of coverage for transcatheter aortic valve implantation (TAVI). This would include patients with severe aortic stenosis who are classified as low surgical risk (STS-PROM <4%) as a first-lin...
Evolving Strategies in Type 2 Diabetes Management: NICE Guideline Update 2025
Type 2 diabetes management in adults is undergoing significant changes with the draft 2025 NICE guideline update. What are the main improvements in medication, monitoring, and patient care for adults with type 2 diabetes? The answer: The new NICE recommendations prioritize a broader use of SGL...
FDA Guidance on Overall Survival Assessment in Oncology Trials

By Staff Writer

August 20, 2025

Overall survival assessment serves as the gold standard for determining the true impact of oncology treatments, directly answering patient and provider questions such as: “How will this therapy affect my length of life?” According to the latest FDA guidance, robust overall survival assessment is ...