The Crucial Role of Pharmacogenetic testing in Thiopurine Therapy

By Staff Writer

March 19, 2024

Introduction: The Power of Thiopurine Drugs

Thiopurine drugs, including azathioprine, mercaptopurine, and thioguanine, are potent tools in the treatment of autoimmune diseases, inflammatory bowel disease, and acute lymphoblastic leukaemia, as well as in preventing rejection after solid organ transplants. However, their efficacy is closely tied to the activity of two enzymes: thiopurine methyltransferase (TPMT) and nudix hydrolase 15 (NUDT15). In this article we look at the importance of thiopurine therapy and pharmacogenetic testing and the potential of more cost-effective treatment.

The Role of TPMT and NUDT15 in Thiopurine Metabolism

Thiopurine drugs are inactive prodrugs that must be metabolised into 6-thioguanine nucleotides (6-TGNs) to function. This metabolic route is catalysed primarily by TPMT. However, TPMT activity can be inhibited by common drugs, which can lead to the accumulation of cytotoxic 6-TGN, contributing to excessive myelosuppression, even with standard doses of thiopurine drugs. This makes genetic testing for these variants crucial for optimising thiopurine therapy dosing and reducing the risk of severe side effects. Prior to starting azathioprine treatment, the Food and Drug Administration (FDA) advises prescribers to take into account genetic or activity testing for TPMT deficiency and to closely monitor treatment using complete blood counts (CBCs).

Monitoring and Testing: A Proactive Approach

Genetic testing can be conducted before or during thiopurine therapy to identify TPMT and NUDT15 variations. TPMT’s enzyme activity phenotype can be directly tested before administering the medication. Following the commencement of treatment, levels of thiopurines and their metabolites can be assessed in order to enhance the accuracy of dosing for thiopurine therapy. However, current practices vary significantly among various specialties, presenting significant challenges to the implementation of testing and the dissemination of results.

Veteran Population Testing in the US

In the United States, the Department of Veterans Affairs (VA) represents the largest healthcare system. However, a significant event in 2014 highlighted the need for more rigorous testing and monitoring of patients prescribed thiopurine drugs. A potential adverse reaction to azathioprine led to the death of a Veteran. This incident, therefore, highlighted the gaps in testing and reliable documentation of pharmacogenetic (PGx) tests in the VA electronic health records (EHRs). Consequently, the VA initiated a risk-reduction programme in 2019. The aim of this initiative is to ensure that medical practitioners monitor patients as per manufacturer recommendations and practice guidelines.

The Cost-Saving Potential of Genetic Testing

Genetic tests for TPMT and NUDT15 variants can potentially save significant costs in treating diseases like leukaemia and organ transplants. These tests can help identify patients at risk of severe side effects from thiopurine drugs. This knowledge allows healthcare providers to adjust dosages or consider other treatment options. This strategy can reduce the occurrence of adverse drug reactions and related healthcare costs. Moreover, a proactive testing and monitoring approach, backed by integrated EHR systems, can prevent adverse drug-use events. This prevention leads to improved patient outcomes and additional cost savings. 

Conclusion: A Call for Proactive Healthcare

The current approach to treating patients with potentially decreased TPMT activity, which is predominantly reactive, has shown its limitations. There is a pressing need for a shift towards a more proactive model of healthcare, where genetic testing for TPMT and NUDT15 variants is standard practice. We need to shift towards a more proactive healthcare model. This model should standardise genetic testing for TPMT and NUDT15 variants. This approach can improve patient outcomes by lowering the risk of severe side effects. It can also lead to significant cost savings in treating diseases like leukaemia and organ transplants. Healthcare providers need to integrate decision supports and clinical dashboards into EHR systems. This will keep them informed about testing needs and available genetic information. This information can guide therapeutic decisions, leading to safer, more effective, and more affordable patient care.

Reference url

Recent Posts

oral cancer East Africa
   

Oral Cancer in East Africa: The Need for Early Detection

💡 Did you know that Toombak use is a leading risk factor for oral cancer in East Africa?

A recent scoping review sheds light on the shocking prevalence of oral cancer in the region, emphasising the urgent need for public health interventions and improved early detection strategies. Enhancing awareness around risk factors like Toombak, tobacco, and alcohol for tackling this growing health crisis.

Curious about the key insights and their implications for health economics? Look into the full article to find out more!

#SyenzaNews #HealthEconomics #Oncology #GlobalHealth

Novartis patent cliff layoffs
     

Engineering Resilience: Mastering Pharma Patent Expiration Strategy

🚨 Are you still reacting to pharmaceutical patent expirations with layoffs and litigation, or are you ready to engineer a strategy that turns the patent cliff into your next competitive edge?

Patent expirations don’t have to derail your pharma portfolio. Learn how to outmaneuver generics and transform challenges into advantages. Dive into our latest insights and take control today.

#SyenzaNews #pharmaceuticals #innovation #PharmaStrategy #patentcliffs

diabetes medicine access
               

Improving Diabetes Medicine Access: Key Changes in the Pharmaceutical Benefits Scheme

🚀 Are we on the verge of a breakthrough in diabetes medication accessibility?

The latest updates to the Pharmaceutical Benefits Scheme (PBS) are set to transform type 2 diabetes management by expanding access to essential medicines like empagliflozin and streamlining the prescribing process for glucagon-like peptide 1 receptor agonists (GLP-1 RAs). These changes not only prioritize equity for high-risk populations but also align with global trends in cost-effective healthcare.

Dive deeper into how these revisions could reshape diabetes care and promote better health outcomes for all.

#SyenzaNews #HealthcareInnovation #healthcare #MarketAccess

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2025 Syenza™. All rights reserved.