Medical AI Future: Sustainable Reimbursement Strategies

By HEOR Staff Writer

May 6, 2024

Introduction

Artificial Intelligence (AI) in medicine has the potential to significantly enhance patient care, yet its widespread adoption is very dependent on sustainable reimbursement models. In a recent article, authors examine how fee-for-service (FFS) and value-based care (VBC) can facilitate the scaling of medical AI, and they propose strategies to align stakeholder interests.

The Challenge of Medical AI Reimbursement

Medical AI’s promise to enhance patient outcomes faces a significant obstacle: achieving sustainable reimbursement. Although the U.S. healthcare system offers a blueprint for this process, the path to reimbursement is filled with multiple complexities, necessitating the collaboration of diverse stakeholders.

Fee-for-Service: A Traditional Approach

FFS remains a prevalent model where medical AI services are billed similarly to other medical interventions. While this model offers transparency and can provide financial sustainability, it is not without risks, such as potential over utilisation and exacerbation of health disparities.

The Shift to Value-Based Care

VBC is reshaping the reimbursement landscape by focusing on patient outcomes and efficiency. This model accounts for a substantial portion of U.S. healthcare spending and offers fewer regulatory constraints. However, the real-world impact of VBC on cost and quality of care remains mixed.

Emerging Models and Real-World Cases

New reimbursement models are emerging, such as revenue-sharing approaches akin to the Medicare Part B drug payment system. Real-world cases, like autonomous AI for diabetic eye examinations, demonstrate how FFS and VBC can be effectively leveraged for reimbursement.

Accelerating Adoption Through Strategic Reimbursement

To expedite the adoption of medical AI, creators must navigate the reimbursement landscape effectively. This may involve pursuing FFS pathways, such as establishing a Current Procedural Terminology (CPT) code, or integrating into existing VBC frameworks like Merit-Based Incentive Payment Systems/ Healthcare Effectiveness Data and Information Set (MIPS/HEDIS).

Conclusion

The journey towards sustainable reimbursement for medical AI is complex, yet essential for its successful integration into healthcare. By understanding and utilising current FFS and VBC models, stakeholders can ensure that medical AI reaches its full potential in improving patient outcomes.

Reference url

Recent Posts

Alzheimer’s Care Innovation: Advancing Implementation Across Europe

By João L. Carapinha

January 21, 2026

Pioneering Alzheimer's Care Innovation in Europe Alzheimer's care innovation is transforming Europe's approach to the disease, shifting from policy discussions to real-world implementation of disease-modifying therapies. With 10 milli...
Long-Term Benefits of Composite Treatment Targets in Type 2 Diabetes Management
Sustained Composite Treatment Targets Enhance Clinical and Economic Outcomes in Type 2 Diabetes A recent modeling study examines the long-term benefits of achieving
Navigating Economic Resilience Through Life Sciences Investment

By João L. Carapinha

January 20, 2026

Navigating a Leaderless Global Economy Through Life Sciences Investment In an era of deepening geopolitical fragmentation, often termed the G-Zero world, global governments are urged to prioritize bold life sci...