Machine Learning to Improve Diagnosis of Long QT Syndrome

By Staff Writer

March 25, 2024

Introduction:

Long QT Syndrome (LQTS) is a cardiac disorder associated with sudden arrhythmic death. Traditional methods of detection, such as resting electrocardiography (ECG), are often inadequate as they fail to identify 30% to 50% of patients with concealed LQTS. However, recent developments in artificial intelligence (AI) and machine learning (ML) show promise in improving LQTS diagnosis accuracy.

Genetic Testing in LQTS Diagnosis:

Genetic testing plays a crucial role in diagnosing LQTS. A positive result is present in 80% of patients with a definite diagnosis of LQTS. Most cases that are genotype-positive (90%-95%) have culprit variants in the KCNQ1 or KCNH2 genes. The identification of a positive genotype in a patient has significant implications for their risk of arrhythmias, lifestyle recommendations, genetic counselling, and pharmacologic therapy. However, it’s important to note that genetic testing alone is not sufficient for diagnosing LQTS, especially in cases of concealed LQTS.

Machine Learning and LQTS Diagnosis:

ML, particularly convolutional neural networks (CNNs), is increasingly being applied to detect LQTS on ECGs. It can complement genetic testing, providing a more comprehensive and accurate diagnostic approach. These advanced AI methodologies offer a more accurate and efficient approach to identifying LQTS, even in patients with concealed or mild symptoms.

CNN Model Development and Testing:

A recent study tested a CNN model that identifies LQTS on baseline ECGs. The researchers developed this model for a diverse group of patients suspected of having LQTS. Furthermore, the model can differentiate between the most common LQTS genetic types. These types specifically involve variants in KCNQ1 or KCNH2.

Figure 1. Performance of a Deep Learning Model for LQTS
and Concealed LQTS Detection

Model Validation and Performance:

The CNN model demonstrated high accuracy and sensitivity in detecting LQTS and distinguishing between KCNQ1 and KCNH2 variants. The model’s performance was robust across different centres, ages, sexes, and ethnicities. It outperformed QTc intervals measured by arrhythmia experts, particularly in identifying LQTS in ECGs with normal or borderline QTc intervals.

Figure 2. Performance of a Deep Learning Model for LQTS and Concealed LQTS Detection by Validation Subgroup

Clinical Applications of CNNs in ECG Interpretation:

The use of CNNs in ECG interpretation could revolutionise LQTS diagnosis. ML can detect hidden features on ECGs, even in cases of concealed LQTS. This technology could be crucial for screening, helping to identify patients who may need further testing or are at risk of QT-mediated arrhythmias when exposed to QT-prolonging drugs. ML approaches are characterised by their lower requirement for knowledge, reduced time and labour intensity, and independence from other clinical information, unlike human readers. These methods can be used in small, underserved communities, where LQTS may be more common.

Conclusion:

CNNs are effective in detecting LQTS and differentiating between the two most common genotypes. Broader validation over an unselected general population may support the broad application of this model to stratify torsade de pointes risk in patients with suspected LQTS.

Reference url

Recent Posts

allopurinol Marfan syndrome orphan
       

Allopurinol Designated an Orphan Drug for Marfan Syndrome

🌟 What does the EMA’s orphan drug designation for allopurinol mean for those impacted by Marfan syndrome?

This groundbreaking move highlights a significant step forward in tackling rare diseases, offering hope to patients with limited treatment options. Allopurinol, traditionally used for gout, shows promise in addressing life-threatening aortic complications associated with Marfan syndrome, thanks to its antioxidant properties.

Dive into the implications of this development for healthcare innovation, patient access, and the future of rare disease treatment!

#SyenzaNews #HealthEconomics #Innovation #MarketAccess

marstacimab hemophilia B
                

NICE’s Approval of Marstacimab for Hemophilia B: Transforming Treatment Landscapes and Economic Implications

💡 Are we witnessing a paradigm shift in hemophilia treatment?

The recent recommendation from NICE for marstacimab as a novel therapy for severe hemophilia B is a game-changer. With its ability to provide effective prophylaxis while potentially lowering treatment costs, this could reshape patient care and health economics in this space.

Dive into the implications this has for patients and healthcare providers, and why marstacimab’s approval could be a pivotal moment for hemophilia management.

Explore the full article for deeper insights!

#SyenzaNews #HealthEconomics #HealthcareInnovation #MarketAccess

HPV-related cancer trends
    

HPV-Related Cancer Trends in South Africa 2011-2021

🌍 Are we witnessing a rise in HPV-related cancer in South Africa?

A recent analysis of data from the South African National Cancer Registry highlights concerning trends: while cervical cancer rates are declining, there’s an alarming rise in non-cervical anogenital cancers. This underscores the urgent need for enhanced cancer prevention and access to efficient healthcare services in the country.

Dive into the findings and explore the implications for health systems and policies.

#SyenzaNews #HealthEconomics #HealthcareInnovation #GlobalHealth

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2025 Syenza™. All rights reserved.