Machine Learning to Improve Diagnosis of Long QT Syndrome

By HEOR Staff Writer

March 25, 2024

Introduction:

Long QT Syndrome (LQTS) is a cardiac disorder associated with sudden arrhythmic death. Traditional methods of detection, such as resting electrocardiography (ECG), are often inadequate as they fail to identify 30% to 50% of patients with concealed LQTS. However, recent developments in artificial intelligence (AI) and machine learning (ML) show promise in improving LQTS diagnosis accuracy.

Genetic Testing in LQTS Diagnosis:

Genetic testing plays a crucial role in diagnosing LQTS. A positive result is present in 80% of patients with a definite diagnosis of LQTS. Most cases that are genotype-positive (90%-95%) have culprit variants in the KCNQ1 or KCNH2 genes. The identification of a positive genotype in a patient has significant implications for their risk of arrhythmias, lifestyle recommendations, genetic counselling, and pharmacologic therapy. However, it’s important to note that genetic testing alone is not sufficient for diagnosing LQTS, especially in cases of concealed LQTS.

Machine Learning and LQTS Diagnosis:

ML, particularly convolutional neural networks (CNNs), is increasingly being applied to detect LQTS on ECGs. It can complement genetic testing, providing a more comprehensive and accurate diagnostic approach. These advanced AI methodologies offer a more accurate and efficient approach to identifying LQTS, even in patients with concealed or mild symptoms.

CNN Model Development and Testing:

A recent study tested a CNN model that identifies LQTS on baseline ECGs. The researchers developed this model for a diverse group of patients suspected of having LQTS. Furthermore, the model can differentiate between the most common LQTS genetic types. These types specifically involve variants in KCNQ1 or KCNH2.

Figure 1. Performance of a Deep Learning Model for LQTS
and Concealed LQTS Detection

Model Validation and Performance:

The CNN model demonstrated high accuracy and sensitivity in detecting LQTS and distinguishing between KCNQ1 and KCNH2 variants. The model’s performance was robust across different centres, ages, sexes, and ethnicities. It outperformed QTc intervals measured by arrhythmia experts, particularly in identifying LQTS in ECGs with normal or borderline QTc intervals.

Figure 2. Performance of a Deep Learning Model for LQTS and Concealed LQTS Detection by Validation Subgroup

Clinical Applications of CNNs in ECG Interpretation:

The use of CNNs in ECG interpretation could revolutionise LQTS diagnosis. ML can detect hidden features on ECGs, even in cases of concealed LQTS. This technology could be crucial for screening, helping to identify patients who may need further testing or are at risk of QT-mediated arrhythmias when exposed to QT-prolonging drugs. ML approaches are characterised by their lower requirement for knowledge, reduced time and labour intensity, and independence from other clinical information, unlike human readers. These methods can be used in small, underserved communities, where LQTS may be more common.

Conclusion:

CNNs are effective in detecting LQTS and differentiating between the two most common genotypes. Broader validation over an unselected general population may support the broad application of this model to stratify torsade de pointes risk in patients with suspected LQTS.

Reference url

Recent Posts

Weight Loss: Advances in Hormone-Based Obesity Treatments

By HEOR Staff Writer

November 12, 2025

Advances in Hormone-Based Pharmacotherapies for Obesity Hormone-based obesity treatments are improving the approach to weight management by targeting the body's neurometabolic systems. A recent
NICE NHS Prioritization: A Strategic Shift to Address Healthcare Challenges
NICE's Unified Prioritization Roadmap NICE NHS prioritization has led to a new, unified framework and board that will tackle emerging healthcare innovations while managing finite assessment capacity. The approach focuses on high-impact areas, including mental health, early cancer detect...
Beta-Blockers in Heart Attack Recovery: Reevaluating Their Role Based on Recent Research Insights

By HEOR Staff Writer

November 10, 2025

Beta-Blockers Heart Attack Research: Key Findings from Recent Meta-Analysis Have you wondered if beta-blockers truly benefit heart attack survivors with normal heart function? Beta-blockers heart attack rese...