Evaluating Machine Learning in Health Economics

By Sumona Bose

January 22, 2024

Introduction

Advances in Machine Learning and Artificial Intelligence (AI) have the potential to transfigure the healthcare industry, offering tremendous benefits to patients. While predictive analytics using ML are already widely used in healthcare operations and care delivery, there is growing interest in exploring how ML can be applied to Health Economics and Outcomes Research (HEOR). The International Society for Pharmacoeconomics and Outcomes Research (ISPOR) established an emerging good practices task force specifically focused on the application of ML in HEOR. The task force identified five key areas where ML could enhance HEOR methodologies.

Machine Learning Functions

The first area is cohort selection, where ML can help identify samples with greater specificity in terms of inclusion criteria. This can lead to more accurate and targeted research, ultimately improving patient outcomes. The second area is the identification of independent predictors and covariates of health outcomes. ML algorithms can analyze large datasets to identify factors that contribute to specific health outcomes, providing valuable insights for researchers and policymakers.

Predictive analytics of health outcomes is another area where ML can make a significant impact. ML algorithms can analyze high-cost or life-threatening health outcomes, helping healthcare providers and policymakers make informed decisions and allocate resources effectively. The fourth area is causal inference, where ML methods such as targeted maximum likelihood estimation or double-debiased estimation can help produce reliable evidence more quickly. This can accelerate the research process and enable faster decision-making.

HEOR and Machine Learning: PALISADE Checklist

ML can be applied to the development of economic models, reducing structural, parameter, and sampling uncertainty in cost-effectiveness analysis. By leveraging ML algorithms, researchers can improve the accuracy and reliability of economic models, leading to more robust and informed decision-making. Overall, ML facilitates HEOR through the meaningful and efficient analysis of big data. However, there is a need for transparency in how ML methods deliver solutions, particularly in unsupervised circumstances. The lack of transparency increases the risk to providers and decision-makers when using ML results.

To address this issue, the task force developed the PALISADE Checklist. This checklist serves as a guide for balancing the potential applications of ML with the need for transparency in methods development and findings. By following this checklist, researchers and decision-makers can ensure that ML solutions are both useful and transparent in healthcare analytics.

Conclusion

As AI continues to advance, it is crucial for the healthcare industry to embrace these technologies and leverage their potential to improve patient outcomes and drive value-based healthcare. By incorporating ML into HEOR methodologies, researchers can gain valuable insights, enhance decision-making, and strengthen healthcare systems.

Reference url

Recent Posts

oral cancer East Africa
   

Oral Cancer in East Africa: The Need for Early Detection

💡 Did you know that Toombak use is a leading risk factor for oral cancer in East Africa?

A recent scoping review sheds light on the shocking prevalence of oral cancer in the region, emphasising the urgent need for public health interventions and improved early detection strategies. Enhancing awareness around risk factors like Toombak, tobacco, and alcohol for tackling this growing health crisis.

Curious about the key insights and their implications for health economics? Look into the full article to find out more!

#SyenzaNews #HealthEconomics #Oncology #GlobalHealth

Novartis patent cliff layoffs
     

Engineering Resilience: Mastering Pharma Patent Expiration Strategy

🚨 Are you still reacting to pharmaceutical patent expirations with layoffs and litigation, or are you ready to engineer a strategy that turns the patent cliff into your next competitive edge?

Patent expirations don’t have to derail your pharma portfolio. Learn how to outmaneuver generics and transform challenges into advantages. Dive into our latest insights and take control today.

#SyenzaNews #pharmaceuticals #innovation #PharmaStrategy #patentcliffs

diabetes medicine access
               

Improving Diabetes Medicine Access: Key Changes in the Pharmaceutical Benefits Scheme

🚀 Are we on the verge of a breakthrough in diabetes medication accessibility?

The latest updates to the Pharmaceutical Benefits Scheme (PBS) are set to transform type 2 diabetes management by expanding access to essential medicines like empagliflozin and streamlining the prescribing process for glucagon-like peptide 1 receptor agonists (GLP-1 RAs). These changes not only prioritize equity for high-risk populations but also align with global trends in cost-effective healthcare.

Dive deeper into how these revisions could reshape diabetes care and promote better health outcomes for all.

#SyenzaNews #HealthcareInnovation #healthcare #MarketAccess

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2025 Syenza™. All rights reserved.