Evaluating AI in Healthcare: Implementing Approaches

By Sumona Bose

March 7, 2024

Introduction

Artificial intelligence (AI) holds great potential in healthcare by enhancing clinical decision-making and patient outcomes. However, a significant gap exists between the development of AI models and their successful integration into clinical practice. Despite the proliferation of AI-based clinical decision support systems (AICDSS), only a meager 2% of these models progress beyond the prototyping stage, leaving the actual clinical impact largely unexplored.

Evaluating Clinical Value through Rigorous Trials

The evaluation of AICDSS through randomised controlled trials (RCTs) stands as a critical step in determining their true clinical value. While some RCTs have been conducted, their outcomes paint a nuanced picture. Although these trials showcase promising statistical performance of AI, nearly half of them fail to demonstrate improved patient outcomes. This discrepancy underscores the complexity of assessing AI solely based on quantitative metrics like accuracy. This may not capture the practical utility of these systems in real-world healthcare settings. Table 1 unpacks the definitions associated with interpreting the patient outcomes. This helps clinicians and researchers shift from the arbitrariness that hinders real-world settings.

Reported in N (%)
Implementation outcomea Clinical explanation Implementation stage RCTs (N = 64) Guidelinesb (N = 5)
Appropriateness Is the AI compatible with the clinical workflow and is it useful? Early 5 (8) 0 (0)
Acceptability Is the AI acceptable, agreeable, or satisfactory for the users? Ongoing 10 (16) 0 (0)
Feasibility Can the AI be successfully used as intended by the manufacturer? Early 16 (25) 0 (0)
Adoption Do the users express the initial decision, or action to try or employ the AI? Ongoing 6 (9) 0 (0)
Fidelity Is the AI implemented as intended by the manufacturer? Ongoing 31 (48) 0 (0)
Implementation cost What is the cost impact of implementing the AI system? Late 4 (6) 0 (0)
Penetration Has the AI been adopted by all groups of trained users? Late 0 (0) 0 (0)
Sustainability Is the AI maintained within ongoing clinical operations over time? Late 1 (2) 0 (0)

Table 1: AI in RCTs, Definitions of implementation outcomes were adapted from the taxonomy of implementation outcomes by Proctor et al (2011). 

The Need for a Holistic Evaluation Approach

A comprehensive understanding of AI’s role in clinical practice necessitates a multi-faceted evaluation strategy. Current guidelines like Developmental and Exploratory Clinical Investigations of DEcision support systems driven by Artificial Intelligence (DECIDE-AI) and Consolidated Standards of Reporting Trials–Artificial Intelligence (CONSORT-AI), fall short in providing robust measures for assessing AI implementation success. To address this gap, a mixed-methods evaluation approach,  proves invaluable in dissecting the various dimensions of AICDSS implementation.

Bridging the Gap in Implementation Evaluation

Despite the increasing focus on RCTs evaluating AICDSS in clinical settings, a gap exists in the comprehensive evaluation of implementation outcomes.  While metrics like ‘fidelity’ are commonly reported using quantitative measures, aspects such as ‘acceptability’ and ‘appropriateness’ that demand qualitative scrutiny are often overlooked. This imbalance underscores the need for a more holistic approach towards evaluating the implementation of AICDSS, encompassing factors beyond statistical performance. Figure 1 reiterates the comprehensive value of integrating implementation outcomes in AI in healthcare, revealing an innovative future in the field.

figure 2
Figure 1: a In the current situation, AI-CDSS, are clinically deployed, after going through multiple preclinical validations (e.g., external and temporal algorithm validation) to assess their clinical utility and effectiveness. b To enhance comprehension of factors that contributed to successful implementation or failure at the bedside, implementation outcomes should be systematically integrated in future clinical trials evaluating AICDSS in real-world clinical settings. *Implementation outcomes as described by Proctor et al.

Conclusion

While the efficacy of AICDSS in healthcare settings is crucial, understanding the contextual nuances is imperative. Enhanced systematic reporting of implementation outcomes alongside effectiveness metrics can bridge the existing gap in comprehensively assessing the impact of clinical AI. Embracing an inclusive evaluation framework will not only validate the effectiveness of AICDSS but also shed light on the intricate interplay between AI technology and healthcare delivery.

Reference url

Recent Posts

MFN drug pricing
       

MFN Drug Pricing Targets: Lowering U.S. Drug Costs Through International Alignment

💡 Are U.S. and global drug prices set for a revolution?

The new Most-Favored-Nation (MFN) drug pricing policy from the HHS and CMS aims to align U.S. pharmaceutical prices with those in economically comparable countries, promising significant reductions without stifling innovation. This bold move could lead to more accessible medications for Americans while reshaping global pricing strategies.

Curious about how this might impact your commercial and pricing strategy? Dive into the details!

#SyenzaNews #HealthcarePolicy #HealthEconomics #Innovation #DrugPricing

HTA reform analysis
         

HTA Reform Analysis: Patterns and Global Trends in Health Technology Assessment

🌍 Ever wondered how health technology assessment (HTA) reforms shape global healthcare?

Our latest article provides a comprehensive analysis of HTA reforms across 14 international agencies, highlighting the evolving roles of “catalysts,” “traditionalists,” and “observers.” Discover how international collaborations are pivotal in advancing HTA methodologies and ensuring patient involvement in assessment processes.

Jump into the intricacies of HTA reforms and optimize your health economics strategies!

#SyenzaNews #HealthEconomics #HealthcareInnovation #MarketAccess

drug pricing analysis
            

Drug Pricing Analysis: ICER’s Launch Price and Access Report Aims to Enhance Affordability in Pharma

💡 Are we paying too much for the medicines we need?

The Institute for Clinical and Economic Review (ICER) has released the protocol for its first annual “Launch Price and Access Report,” shedding light on the alarming rise of drug prices in the U.S. and the barriers patients face in accessing treatments. This comprehensive analysis not only explores price trends but also highlights the disconnect between drug pricing and its clinical value.

Dive into key findings that could shape the future of drug policy, affordability, and patient access.

Read the full article to discover more!

#SyenzaNews #HealthEconomics #MarketAccess

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2025 Syenza™. All rights reserved.