Comprehensive Review of Methods to Assess Uncertainty in Health Economic Evaluations

By HEOR Staff Writer

March 22, 2023

As healthcare costs continue to rise, accurate cost-effectiveness estimates are crucial. However, estimating the costs and outcomes of different interventions is complicated by uncertainty.

In model-based health economic evaluations (HEEs), uncertainty can arise from limited data, methodological limitations, and variability in clinical outcomes.

A recent review identified 80 methods for identifying, analyzing, and communicating uncertainty in HEEs. Quantifying uncertainty wherever possible is crucial to ensure accurate and unbiased cost-effectiveness estimates, ultimately leading to optimal allocation of healthcare resources

Reference url

Recent Posts

Paving the Way for Digital Health Technologies: NICE’s Bold New Strategy for the NHS

By HEOR Staff Writer

October 9, 2025

The National Institute for Health and Care Excellence (NICE) is expanding its technology appraisals programme, and starting April 2026, this will include digital health technologies that are placed on an equal legal footing with medicines in the NHS. This initiative forms part of the NHS 10-year ...
Health Misinformation Autism: The Dangers of Politicized Science in Vaccine and Drug Discourse

By João L. Carapinha

October 7, 2025

The BMJ article “Tylenol, vaccines, and autism: the medical mayhem of the MAGA methodologists” argues that political and ideological actors, notably aligned with the MAGA movement, are promoting health misinformation about autism, vaccines, and paracetamol. They amplify preliminary, misinterprete...
Lurbinectedin SCLC Therapy: FDA Approval and Its Economic Implications

By João L. Carapinha

October 6, 2025

The U.S. Food and Drug Administration (FDA) has recently approved lurbinectedin SCLC therapy in combination with atezolizumab, or with atezolizumab and hyaluronidase-qvfc, for the treatment of adult patients with extensive-stage small cell lung cancer (ES-SCLC). This regulatory decision reflects ...