Assisted Reproductive Technology through Artificial Intelligence

By Sumona Bose

March 6, 2024

Introduction

Since the first successful in vitro fertilisation (IVF) birth in 1978, assisted reproductive technology (ART) has advanced, aiding over eight million infertile couples in conceiving. The intricate protocols of IVF involve critical decision-making points handled by clinicians and embryologists, blending evidence-based choices with subjective judgments, shaping ART as both science and art. Artificial intelligence (AI) offers a promising avenue for optimising ART processes like drug selection, cycle monitoring, and embryo selection. Could this be a beginning to a future of unbelievable progress in the field of reproductive health?

Personalising ART with Machine Learning

Customising ART based on individual factors like ovarian reserve, genetic variations, and ethnic disparities can significantly impact treatment success. Machine learning (ML) methods enable tailoring treatment regimens to patient subgroups, optimising ovarian response, and luteal phase support. The integration of ML algorithms into clinical decision support systems (CDSS) harnesses the potential of electronic health records, offering personalised and data-driven approaches to enhance ART outcomes. As shown in Figure 1, the procedures involving ART are intricate, demanding thorough supervision. Clinicians and embryologists bear the responsibility for numerous crucial decision junctures both before and throughout the treatment cycle. AI contributes to this complex process with its data analysis skills.

Figure 1: Potential targets for the application of artificial intelligence and ML methods during clinical and embryological steps in ART. The order and timings of the steps can differ depending on the ART protocol used.

Transparency and Trust in AI Applications

The adoption of AI in ART faces challenges related to trust and interpretability, especially with complex ‘black-box’ models. Transparency emerges as a crucial factor in AI systems to ensure clinicians’ confidence in decision-making tools. Efforts to enhance explainability in AI models, particularly in image-based analyses in embryology, aim to provide insights into model reliability, fairness, and trustworthiness, paving the way for more widespread and effective use of AI in reproductive healthcare.

Conclusion

The integration of AI technologies holds immense promise in ART, offering personalised, data-driven, and transparent solutions to enhance the success rates and safety of assisted reproduction procedures. The blend of science and art in ART, with its intricate protocols and subjective decision-making, sets the stage for AI to make significant advancements in this field.

Reference url

Recent Posts

AI Healthcare Costs: Navigating Financial Hurdles in Technology Integration

By João L. Carapinha

February 4, 2026

AI healthcare costs pose significant financial challenges for U.S. systems, with upfront expenses from $40,000 for basic tools to over $200,000 for advanced generative models, plus recurring fees for cloud computing and integration. How do these compare to electronic health records (EHRs), and ca...
Datroway Metastatic Breast Cancer: FDA Grants Priority Review for Breakthrough Treatment
Datroway metastatic breast cancer treatment has gained Priority Review from the US Food and Drug Administration (FDA) for first-line use in adult patients with unresectable or metastatic triple-negative breast cancer (TNBC) ineligible for PD-1/PD-L1 inhibitors. This milestone for AstraZeneca and ...
Surge in Obesity Intervention Costs in the Netherlands

By HEOR Staff Writer

February 3, 2026

Obesity intervention costs in the Netherlands have skyrocketed, with a Zorginstituut Nederland report detailing a €61.8 million rise from 2021 to 2024 ...