Artificial Intelligence in Predicting Glioblastoma Treatment Survival

By Staff Writer

February 20, 2024

Introduction:

Among all the major brain cancers around the globe, glioblastoma is the most aggressive form of the disease. It poses a tremendous challenge to medical experts and healthcare services. An incidence rate of 3.21 per 100,000 people in the U.S is associated with glioblastomas, which account for 12-15% of all brain tumours. Conventional treatments are often ineffective due to the invasive nature of these tumours and blood-brain barrier resistance. For patients with glioblastoma, the median survival period is still between 9 and 16 months, despite the fact that there have been breakthroughs in radiation therapies and treatments with temozolomide. This highlights the necessity of developing more precise glioblastoma treatment survival predictions and the potential of using artificial intelligence (AI).

The Rise of Machine Learning in Oncology

Machine learning (ML) and deep learning (DL) methods have gain popularity in their application in bioinformatics and medicine, showing promising results in particularly in oncology. Various studies have utilised different ML and statistical models to predict glioblastoma patients’ survival, yielding promising results. However, the potential of DL algorithms in predicting glioblastoma survival remains largely unexplored. Magnetic resonance imaging (MRI) has a well-established role in the diagnosis and treatment planning of oncology care. However, recent research indicates the possibility of applying ML algorithms to post-radiotherapy MRI images. This could potentially assist with more accurate patient survival rates. 

A New Approach to Glioblastoma Survival Prediction

Addressing this gap in research on the use of AI in specific cancer survival, a recent study developed five ML models and a deep neural network (DNN) model to predict glioblastoma patients’ survival. This study by Babaei Rikan et al. marks the first use of DL in both classification and regression approaches to predict survival based on the Surveillance Epidemiology and End Results (SEER) database. Furthermore, they introduced and utilised five clinically meaningful classes for survival, aiming for more accurate predictions and effective treatment planning in oncology. The DNN model showcased exceptional performance in this case, positioning it as a valuable tool to be ulitised in clinical practice.

The Role of AI in Glioblastoma Treatment

MRI plays a crucial role in the management of various cancer types including glioblastoma, aiding in diagnosis, treatment planning, and treatment response assessment. Moreover, recent research suggests that MRI images obtained after radiotherapy could offer more accurate survival predictions in this patient population. A King’s College London study sought to use DL for predicting glioblastoma survival rates after 8 months of radiotherapy, based on the first brain MRI taken. The research hypothesised that image-based predictions would surpass those made using only non-imaging information such as demographic, pathological, and treatment-related variables. The results indicated that the imaging model could effectively adapt to both retrospective and external, prospective test data. This suggests the model’s robustness against variations in imaging protocols and class imbalances. 

Conclusion:

The discipline of medicine has taken a major step forward with the implementation of AI in the treatment of glioblastoma. These studies present the first known model utilising the use of imaging to differentiate between short-term and long-term survivors within 8 months of the completion of radiotherapy treatment. Large prospective investigations could verify these models, potentially encouraging more frequent MRI monitoring of suspected short-term survivors. Doctors and other healthcare providers could use these technologies to create personalised treatment plans for their glioblastoma patients. They could also optimise resource allocation and manage time more effectively in their practices. Importantly, this could lessen the anxiety of the patient’s experience post diagnosis. 

Reference url

Recent Posts

Egypt Hepatitis C Program
     

Egypt’s Hepatitis C Program: A Model for Africa’s Health Initiatives

🌍 How can Egypt’s hepatitis C elimination program inspire other African nations?

Discover how Egypt has set a powerful benchmark for public health excellence through its “100 million Healthier Lives” campaign, achieving Gold-tier certification from the WHO. This article looks into the training initiatives and regional collaboration that are paving the way for health improvements across the continent.

#SyenzaNews #GlobalHealth #HealthcareInnovation #Innovation #HealthForAll

Maturity Level 3 regulation
      

Maturity Level 3 in Medicines Regulation in Senegal and Rwanda

🌍 How do robust regulatory systems impact public health globally?

Senegal and Rwanda have made significant strides by achieving WHO Maturity Level 3 in medicines regulation, enhancing their capability to ensure safe and effective medical products. This accomplishment not only fortifies local health standards but also sets a benchmark for other nations to follow, promoting regional collaboration and economic benefits. Discover how this achievement will impact global health outcomes!

#SyenzaNews #globalhealth #regulatoryaffairs #MarketAccess #innovation

95-95-95 HIV targets
     

Advancing the 95-95-95 Targets: A Roadmap to End AIDS by 2030

🌍 How close are we to achieving the **95-95-95 HIV targets**?

Explore the latest insights from UNAIDS on the progress and strategic importance of these targets in ending the HIV/AIDS pandemic by 2030. The framework not only focuses on comprehensive testing and treatment but also emphasizes equity in healthcare access across all demographics.

Read more about how we can collectively strive for a future free from HIV/AIDS-related stigma and health inequities.

#SyenzaNews #GlobalHealth #HealthcareInnovation #Healthforall #FutureofHealthcare

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2024 Syenza™. All rights reserved.