AlphaMissense and Genetic Sequencing

By Michael Awood

September 24, 2023

Artificial intelligence (AI) in healthcare continues to show its vast capabilities. Many examples have shown how they deploy it as a predictive tool for early disease identification. This has enabled the provision of early and effective treatment where necessary. But could we do this earlier? And how early could healthcare implement a tool like this? 

Machine learning algorithms have helped predict harmful genetic changes. Thus, healthcare benefits from this through improved rare disease diagnosis and targeted treatments. In a recent paper, researchers explore how to use this in genetic sequencing.

Genome sequencing has revealed over 4 million missense variants. These are genetic variants that alter the amino acid sequence of proteins. However, researchers have clinically classified only about 2% of these variants as pathogenic or benign. So, the challenge is to predict accurately how the remaining variants will affect protein function and the health of the organism.

To address this, researchers have developed machine-learning approaches that exploit patterns in biological data. Alphafold 1 is a protein structure prediction tool designed by DeepMind. It ranked 13th in Critical Assessment Structure Prediction (CASP). But, in 2020, the researchers made significant advancements to the model, which produced Alphafold 2. In fact, it scored 90 out of 100 on the Global Distance Test (GDT). This was a powerful achievement. For reference, a score of 100 shows a complete match of proteins that formed naturally.

As a result of adapting the AlphaFold models, researchers designed AlphaMissense. This was specific for human and primate databases. It prevents circularity by utilizing weak labels from population frequency data and unsupervised protein language modelling. Amino acid sequences are used to predict the pathogenicity of all single amino acid changes at a position in the sequence. They trained it in two stages. They trained the network to predict single-chain structure and model protein language in the first stage. In the second stage, they fine-tune the model to classify variant pathogenicity on human proteins.

AlphaMissense found new disease variants and measured their effects on clinical annotation and experimental tests. In contrast to other models, it excelled in distinguishing between harmful and harmless gene mutations. Additionally, it achieved state-of-the-art performance across all curated clinical benchmarks.

Because of these advances, researchers created a dataset of 71 million missense variant predictions for the human proteome using the model. Clinicians could use these resources to prioritise variants for rare disease diagnostics, inform studies of complex trait genetics, and they could serve as a starting point for designing and interpreting further experiments across the human proteome. 

AI and machine learning are poised to play a crucial role in healthcare by enabling accurate prediction of variant pathogenicity. Models like AlphaMissense could speed up our understanding of the molecular effects of variants on protein function. This will help find genes that cause diseases and improve the diagnosis of rare genetic diseases.

Reference url

Recent Posts

lenacapavir HIV PrEP access
    

Global Health Partnerships Unite to Expand Access to Lenacapavir for HIV Prevention

💉 How can we ensure equitable access to HIV prevention methods like lenacapavir?

A recent initiative from the Global Fund, supported by key global health organizations, aims to provide affordable access to this new HIV pre-exposure prophylaxis medication.

With a goal to reach 2 million individuals over three years, this coordinated effort seeks to drastically cut HIV infections and align with our commitment to ending AIDS by 2030.

Explore the details of this impactful collaboration and how it could transform HIV prevention.

#SyenzaNews #globalhealth #HealthcareInnovation #MarketAccess

antimicrobial resistance africa
     

Africa’s Health Crisis: Antimicrobial Resistance and Mpox Outbreak

🌍 Are we prepared to tackle the hidden pandemic of antimicrobial resistance (AMR) in Africa?

With AMR rapidly becoming a dominant health crisis, it’s critical to understand its impact on our healthcare systems and most vulnerable populations.

The Africa CDC highlights the urgent need for substantial investment and coordinated responses to combat this escalating threat, alongside the ongoing Mpox outbreak.

Discover the pressing challenges and potential solutions in our latest article.

#SyenzaNews #GlobalHealth #HealthcareInnovation #AntimicrobialResistance #PublicHealth

BioSapien cancer drug delivery
    

BioSapien Innovative Cancer Drug Delivery Solutions

🌟 How is innovation in drug delivery shaping the future of cancer treatment? 🌟

Discover how UAE-based BioSapien is transforming the healthcare landscape with the MediChip™ platform, securing $5.5 million in pre-Series A funding to enhance cancer care.

This innovative solution promises to minimise side effects and improve treatment outcomes for patients, fully embracing the potential of biotechnology in the fight against cancer.

Read more about BioSapien’s journey and its impact on global health!

#SyenzaNews #biotechnology #oncology #innovation #HealthTech

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2024 Syenza™. All rights reserved.