AI’s Approaches to Maternal and Neonatal Health in Low Resource Settings

By Sumona Bose

December 23, 2023


A significant challenge faced by hospitals and medical practitioners in low- and middle-income countries is the lack of sufficient healthcare facilities for timely medical diagnosis of chronic and deadly diseases. Maternal and neonatal morbidity due to non-communicable and nutrition-related diseases is a serious public health issue that leads to several deaths every year. Detecting these conditions at their early stages is challenging, putting patients at risk of developing severe conditions over time. However, the advent of Artificial Intelligence (AI) has opened up new possibilities for improving maternal and neonatal health. This article will give an overview on AI’s Approaches to Maternal and Neonatal Health in Low Resource Settings.

AI holds Promise for Maternal and Neonatal Health

AI has emerged as a practical assistive tool in various healthcare sectors, but its application in maternal and neonatal health is still in its nascent stages. One example of how AI can be used in low-resource settings is in maternal health and diagnostics services. In these settings, access to proper healthcare infrastructure and professionals is limited, making it difficult to provide holistic care to pregnant women and their children. However, AI technologies such as digital chatbots and support groups can aid in maternal and neonatal health monitoring and management. These technologies can engage users in follow-up questions about their health in their desired language, helping to disperse basic health information.

Figure 1: Focus Areas on Role of AI in complimenting maternal health


Challenges and Solutions for AI

Explainable Artificial Intelligence (XAI) or Dependable AI (DAI) can provide insights into the decision-making process of AI models. This level of explainability increases the confidence that medical practitioners and AI researchers have in the system, leading to broader adoption of AI in the healthcare field. By understanding why someone has been classified as ill or otherwise, the perception of AI models as a “black box” can be changed, making them more scalable and employable. XAI can be merged with smart healthcare systems that incorporate the Internet of Things, cloud computing, and AI, particularly in the fields of maternal and neonatal health. These intelligent healthcare systems can be utilized for various purposes, including disease diagnosis and treatment selection.

In some crucial small sample size healthcare problems where large datasets are not available, Few-shot learning or Zero-shot learning can be used to train AI models. These learning frameworks utilize domain information to reach medical decisions or predictions, making them efficient tools for doctors to handle rare medical conditions and problems that require years of experience.


Improving maternal and newborn health requires bringing speedy diagnosis and treatment to point-of-care settings in developing nations with limited resources.

Reference url

Recent Posts

Cost and clinical impact of MIS-C

Understanding the Cost and Clinical Impact of Multisystem Inflammatory Syndrome in Children (MIS-C)

🔍 Discovering the Economic Impact of Multisystem Inflammatory Syndrome in Children (MIS-C) 🏥💰

Understanding the cost and clinical impact of MIS-C during COVID-19 is crucial for healthcare providers and policymakers. Learn about treatment costs, patient outcomes, and key statistics related with MIS-C.

🌟#Healthcare #MIS-C #COVID19 #Pediatrics #HealthEconomics #MedicalResearch #HealthcareResearch #MedicalEconomics 📊

Let’s navigate the intersection of healthcare and economics together! 💼 #HealthcareInsights #EconomicAnalysis 🧠


Striking the Balance: Optimising Hepatitis B Treatment Strategies in The Gambia

Hepatitis B continues to pose a significant public health challenge, but the World Health Organization continues to work towards achieving their ambition of eliminating HBV as a public health problem by 2030.

One strategy is the Treat All approach, which sounds promising – however, in low-resource settings implementing promising strategies becomes more complex. This study explores striking the balance between promising strategies and getting people the treatment they need.

Learn more about innovative HBV treatment approaches and their impact on global health. Stay informed and join the conversation! 💡🔬 #HealthcareInnovation #HBVResearch

cost effectiveness multiple sclerosis

Cost-Utility and Cost-Effectiveness of Disease-Modifying Drugs for Relapsing-Remitting Multiple Sclerosis

Exploring the Cost-Utility of MS Treatments: A Comprehensive Review 🧠💼 Dive into the latest findings on the cost-effectiveness of Disease-Modifying Drugs for Multiple Sclerosis. Discover key insights and recommendations for optimizing treatment strategies. #MSresearch #HealthcareEconomics #Neurology #HealthTech 📊🔬

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.



1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA



© 2024 Syenza™. All rights reserved.