Enhancing Fairness in AI/ML Models for Healthcare Using Real-World Data

By Charmi Patel

May 22, 2024

Introduction

The latest research in artificial intelligence (AI) and machine learning (ML) has completely transformed healthcare industry, providing solutions for risk prediction, disease diagnosis, and outcome forecasting. The integration of AI/ML with real-world data (RWD) has shown promise in improving healthcare decision-making processes. However, concerns about algorithmic bias and fairness have emerged, emphasising the need for comprehensive research in this area.

Understanding Algorithmic Bias in Healthcare

Algorithmic fairness in AI/ML applications is crucial to prevent biases that could disproportionately impact different societal groups. Furthermore, examples from healthcare, such as biassed health cost predictions and disparities in disease outcomes, underscore the importance of fair AI/ML practices in healthcare settings.

Assessing Fairness in AI/ML Models

Researchers use metrics such as equality of opportunity, predictive parity, and statistical parity to assess fairness in ML models. Subsequently, they commonly apply pre-processing techniques like reweighing and data imputation to mitigate bias and improve fairness in healthcare applications.

Mitigating Bias in Healthcare AI/ML

Studies have explored pre-processing, in-processing, and post-processing methods to address bias in ML models. Furthermore, techniques such as recalibration and reweighing have shown promise in improving fairness and reducing disparities in healthcare predictions.

Future Research and Recommendations

Future research should focus on expanding fair ML practices into multi-modality and unstructured data. Consequently, this enhances model interpretability, addressing biases in data collection and governance. Collaborative efforts among AI experts, healthcare professionals, and ethicists are essential to ensure the ethical and equitable use of AI/ML in healthcare settings.

Advancing fair AI/ML practices in healthcare with RWD highlights the need for ongoing research. This promotes trustworthy and inclusive healthcare decision-making processes. Continuous exploration in this field is crucial. Lastly, it highlights the critical nature of ongoing investigations in advancing healthcare AI/ML practices.

The Role of Explainable AI in Healthcare

Explainable AI plays a vital role in healthcare by providing transparency and interpretability in AI/ML models, aiding in understanding how decisions are made and increasing trust in the technology.

Reference url

Recent Posts

Novartis patent cliff layoffs
     

Engineering Resilience: Mastering Pharma Patent Expiration Strategy

🚨 Are you still reacting to pharmaceutical patent expirations with layoffs and litigation, or are you ready to engineer a strategy that turns the patent cliff into your next competitive edge?

Patent expirations don’t have to derail your pharma portfolio. Learn how to outmaneuver generics and transform challenges into advantages. Dive into our latest insights and take control today.

#SyenzaNews #pharmaceuticals #innovation #PharmaStrategy #patentcliffs

diabetes medicine access
               

Improving Diabetes Medicine Access: Key Changes in the Pharmaceutical Benefits Scheme

🚀 Are we on the verge of a breakthrough in diabetes medication accessibility?

The latest updates to the Pharmaceutical Benefits Scheme (PBS) are set to transform type 2 diabetes management by expanding access to essential medicines like empagliflozin and streamlining the prescribing process for glucagon-like peptide 1 receptor agonists (GLP-1 RAs). These changes not only prioritize equity for high-risk populations but also align with global trends in cost-effective healthcare.

Dive deeper into how these revisions could reshape diabetes care and promote better health outcomes for all.

#SyenzaNews #HealthcareInnovation #healthcare #MarketAccess

HPV testing HNSCC
    

HPV Testing in Head and Neck Squamous Cell Carcinoma

🔍 Are you up-to-date with the latest advancements in HPV testing for head and neck cancer?

Our comprehensive article looks into the innovation of diagnostic methods for HPV status determination in head and neck squamous cell carcinoma (HNSCC). From traditional p16 immunohistochemistry to innovative liquid biopsies, discover the critical role these advancements play in prognosis, treatment planning, and improving patient outcomes.

Look into this essential topic and see how these insights could revolutionize clinical practices.

#SyenzaNews #oncology #HealthTech #HealthcareInnovation

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2025 Syenza™. All rights reserved.