AI is Enhancing Gastroenterology and Hepatology

By Sumona Bose

January 25, 2024

Introduction

In the past two decades, the field of gastroenterology and hepatology has witnessed a significant expansion in the application of artificial intelligence (AI). With reliance on imaging, AI has enhanced the detection of lesions, identification of premalignant or malignant lesions, risk stratification, and prediction of disease prognosis or treatment response. Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide. Early identification of premalignant lesions or gastric neoplasia is crucial. However, conventional endoscopic imaging techniques have shown relatively low sensitivity and specificity in identifying these lesions. This is where machine learning (ML) and deep learning (DL) models can play a vital role. Thus, this article gives insight into how AI is enhancing gastroenterology and hepatology.

Machine Learning and Deep Learning: Detecting Gastric Conditions

ML and DL have the potential to assist clinicians in diagnosing gastrointestinal and liver neoplasms, bleeding, infection, and inflammatory processes. These models can also predict outcome measures in these conditions. By providing AI suggestions that align with a clinician’s reasoning, ML and DL models can enhance clinical decision-making. However, if there are discrepancies between AI suggestions and clinician judgment, further investigation is necessary. The future integration of ML and DL models into standard clinical care has the potential to guide diagnoses, treatment interventions, and outcome predictions. However, further research is needed to explore how these measures can be effectively implemented in clinical practice.

AI applications in gastroenterology and hepatology are rapidly expanding and evolving. The proliferation of AI applications is expected to enable “precision medicine” on a broader scale. Noninvasive ML-based algorithms are likely to replace invasive diagnostic interventions for certain conditions, improving clinical prediction models. Diagnostic interventions, such as video capsule endoscopy (VCE) interpretation, may see a decrease in human interpretation, with AI-assisted technology taking on a more significant role. Real-time clinical settings, such as polyp detection during colonoscopy, can greatly benefit from AI-assisted technology. Additionally, the integration of monitoring devices like smartphones and smartwatches with ML in disease management is predicted to receive more attention in the coming years.

Conclusion

To fully harness the potential of AI in gastroenterology and hepatology, the creation of a universal, high-quality dataset is essential. This dataset will enable the development of algorithms that can define the epidemiology and risk factors of diseases more accurately. AI assistance should aim to decrease physician workload and maximize productivity by allowing clinicians to focus on faster, more accurate clinical decision-making. AI is enhancing gastroenterology and hepatology which will prove to be beneficial to healthcare.

 

Reference url

Recent Posts

BEBT-908 DLBCL treatment
        

BEBT-908 DLBCL Treatment: A Milestone Approval for a First-in-Class Dual Inhibitor in China

🚀 Are we on the brink of a revolution in DLBCL treatment?

The recent conditional approval of **BEBT-908** by China’s National Medical Products Administration is not just a milestone for oncology, but potentially a game-changer for adults battling relapsed or refractory diffuse large B-cell lymphoma. With its dual-target mechanism, this first-in-class therapy offers promising efficacy and a well-thought-out access strategy that could reshape treatment standards.

Dive into the full article to discover how BEBT-908 is setting new benchmarks in both clinical outcomes and healthcare affordability.

#SyenzaNews #oncology #pharmaceuticals #MarketAccess

AI Cost Implications
    

AI Clinician in Pediatric ICU: A Review and HEOR Perspective

🤖 What could AI Clinician support mean for pediatric ICU care?

A new collaboration between Imperial College London and CHOC is developing an AI system to guide treatment decisions in PICUs. This article reviews the initiative and examines its broader health system implications—offering a Health Economics and Outcomes Research (HEOR) perspective on how AI may shape efficiency, equity, and value in critical care.

Read on to explore how clinical innovation intersects with healthcare economics.

#SyenzaNews #AIinHealthcare #HEOR #PediatricCare #HealthInnovation #PICU

10-Year Health Plan
       

10-Year Health Plan: Transforming England’s NHS for the Future

🚀 What does the future of healthcare in England look like?

The newly unveiled 10-Year Health Plan for England sets the stage for a transformative approach, emphasizing digital innovation, community-driven care, and a shift towards preventive health. This strategic framework aims to create a more resilient and equitable NHS that prioritizes the health and well-being of all its citizens.

Curious about how these changes will impact patient experiences and workforce development? 🌟 Dive into the full article to explore the comprehensive strategies and anticipated outcomes!

#SyenzaNews #DigitalHealth #HealthcareInnovation

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

JOIN NEWSLETTER

© 2025 Syenza™. All rights reserved.