AI in Healthcare Advancements

By Sumona Bose

February 9, 2024

Introduction

Artificial intelligence (AI) has emerged as a powerful tool in the healthcare industry, enhancing the way we approach patient care and clinical research. From personalised devices to improved clinical trial designs, AI-driven applications are changing the landscape of healthcare. However, as with any new technology, there are challenges that need to be addressed to fully harness its potential.

Customized Devices for Personalized Care

One of the most exciting applications of AI in healthcare is the development of patient-specific devices. These devices are designed to meet the unique requirements of each individual, taking into account their anatomical particularities, physiological conditions, and pathological status. For example, advancements have been made in the creation of bioprosthetic heart valves, cardiovascular stents, tissue-engineered vascular grafts, prostheses for tumour reconstruction, cranial implants, and dental implants. By tailoring these devices to the specific needs of patients, AI technology is improving treatment outcomes and enhancing patient comfort.

Enhancing Clinical Trial Designs

AI is also playing a crucial role in improving the design and execution of clinical trials. By leveraging data from electronic health records (EHRs), medical literature, and trial databases, AI algorithms can enhance patient-trial matching and recruitment, leading to higher success rates for clinical trials. This is particularly important in addressing the issue of underrepresentation and lack of diversity in trial populations. By using AI to identify suitable candidates and streamline the recruitment process, researchers can ensure that clinical trials are more inclusive and representative of the broader population.

AI in the Pharmaceutical Industry

The pharmaceutical industry is also benefiting from the integration of AI technologies. Machine Learning has been a critical component in drug discovery as well. AI can assess the severity of diseases and predict the effectiveness of treatments for individual patients even before their administration. This has the potential to inform drug design and development processes. AI-based tools can analyse vast amounts of data to generate meaningful insights, improving the efficiency of drug discovery and reducing the time required to develop treatments for various diseases. This is particularly relevant in the context of emerging diseases like COVID-19, where rapid treatment development is crucial.

An external file that holds a picture, illustration, etc.Object name is jcm-11-02265-g004.jpg
Figure 3: Applications of AI in drug discovery.

Challenges and Ethical Considerations

While the potential of AI in healthcare is immense, there are challenges that need to be addressed. It should be noted that there is no universally applicable legal framework for AI. One of the main concerns is the lack of transparency and understanding of AI algorithms. The “black box” phenomenon refers to the inability to explain the precise steps leading to AI tools’ predictions. The challenge with the ”black box” phenomenon is the ”human inability” to trace back the sources of AI information which casts doubts on the processes involved in gathering big data analysis.

An external file that holds a picture, illustration, etc.Object name is jcm-11-02265-g005.jpg
Figure 4: The main challenges in AI clinical integration.

Conclusion

The clinical applications of AI in healthcare are proving to be transformative, from the development of personalised devices to enhancing clinical trial designs and aiding the pharmaceutical industry. However, there are challenges that need to be addressed, such as the lack of transparency in AI algorithms and general insufficient frameworks of AI in healthcare. By overcoming these challenges and ethical considerations, AI has the potential to greatly improve patient care and outcomes in the healthcare industry.

Reference url

Recent Posts

EU Launches Joint Scientific Consultations to Enhance Health Technology Assessment

By João L. Carapinha

January 14, 2026

Launching Joint Scientific Consultations in 2026 The European Commission has initiated the first submission period for Joint Scientific Consultations under the EU Health Technology Assessment (HTA) Regulation. This marks the third su...
β-Blockers Myocardial Infarction: Reevaluating Their Role in Patients with Preserved Ejection Fra...
β-blockers after myocardial infarction in patients with preserved ejection fraction (LVEF ≥50%) do not significantly improve key outcomes like mortality or recurrent events. This addresses a common query: How effective are β-blockers in post-heart attack care for those with normal heart function?...
Epidyolex Spending in Portugal Exceeds €3 Million Amid Regulatory Delays

By HEOR Staff Writer

January 13, 2026

Portugal's Epidyolex spending has topped €3 million since 2021, fueling debates on access to this CBD-based epilepsy drug through the National Health Service (SNS). If you're wondering how this impacts patient care and healthcare costs, the answer lies in Infarmed's nearly four-year evaluation fo...