Advances in Cervical Cancer Classification: Comparing Deep Learning Models for Enhanced Screening Accuracy

By João L. Carapinha

February 3, 2025

A recent article provides a comprehensive comparison of 16 deep learning models focused on cervical cancer classification using transfer learning from pap smear images. The study utilized two publicly available datasets, Herlev and SIPaKMeD, and evaluates the performance of various pre-trained CNN models such as VGG16, VGG19, ResNet series, DenseNet series, MobileNet, XceptionNet, InceptionV3, and InceptionResNetV2. The results reveal that models like VGG16 and ResNet50 achieved high accuracy rates, outperforming traditional classification methods and existing state-of-the-art approaches.

Study Details

The study highlighted that VGG16 and ResNet50 models achieved the highest accuracy rates on the SIPaKMeD and Herlev datasets, respectively. For instance, VGG16 achieved an accuracy of 99.95% for 2-class classification on the SIPaKMeD dataset, while ResNet50 reached an accuracy of 95.10% for 2-class classification on the Herlev dataset. The application of data augmentation techniques alongside transfer learning significantly enhanced the models’ performance and generalizability. Data augmentation expanded the dataset size, whereas transfer learning utilized pre-trained models to adapt efficiently to new tasks. The proposed method outperformed existing state-of-the-art methods in terms of accuracy and F1-score, showcasing its superiority in cervical cancer classification.

Cost-effectiveness of AI-enabled Cervical Cancer Classification

The adoption of deep learning-based computer-aided detection (CAD) systems for cervical cancer classification could be cost-effective over time. These systems reduce the reliance on manual screening, which is labor-intensive and requires highly trained personnel. Automated screening can also decrease the time and resources needed for diagnosis, potentially lowering healthcare costs. In resource-limited settings, deep learning models can provide substantial benefits. They can help address the shortage of trained personnel, improving the accuracy of cervical cancer diagnoses and enhancing healthcare outcomes. The high accuracy of these models in diagnosing cervical cancer at early stages can lead to improved treatment outcomes. Early detection minimizes the need for invasive and costly treatments, yielding significant economic and health benefits.

These deep learning models can help reduce mortality rates. Early detection and effective treatment are crucial to mitigating deaths from cervical cancer. Also, the integration of these models into public health policies could strengthen national cervical cancer screening programs. This includes training healthcare professionals in using these systems and ensuring the necessary infrastructure supports their implementation. Further research is needed though and collaboration to compile larger, diverse datasets and address current model limitations. This collective effort can lead to the development of more robust and generalizable models applicable across different healthcare settings.

Reference url

Recent Posts

Navigating Novo Nordisk Board Changes: Leadership for Growth and Strategy

By João L. Carapinha

October 21, 2025

The Novo Nordisk board changes involve a major restructuring, as the Novo Nordisk Foundation is revitalizing leadership ahead of a general meeting on November 14, 2025, where new directors will be elected. Key candidates include former CEO Lars Rebien Sørensen as chair and Cees de Jong as vice ch...
Fabhalta Kidney Treatment Shows Promise in Slowing Disease Progression for IgA Nephropathy
Novartis has announced positive final results from the Phase III APPLAUSE-IgAN trial, which demonstrated that Fabhalta kidney treatment (iptacopan) achieved a statistically significant and clinically meaningful slowing of kidney function decline in patients with IgA nephropathy compared to placeb...
Keytruda Lung Cancer Treatment: Long-Term Survival Gains in NSCLC

By João L. Carapinha

October 20, 2025

If you're searching for effective options in Keytruda lung cancer treatment, recent data shows pembrolizumab (Keytruda) significantly boosts survival rates in non-small cell lung cancer (NSCLC). In the KEYNOTE-671 trial, this immunotherapy combined with chemotherapy raised five-year overall survi...