Enhancing Fairness in AI/ML Models for Healthcare Using Real-World Data

By Charmi Patel

May 22, 2024

Introduction

The latest research in artificial intelligence (AI) and machine learning (ML) has completely transformed healthcare industry, providing solutions for risk prediction, disease diagnosis, and outcome forecasting. The integration of AI/ML with real-world data (RWD) has shown promise in improving healthcare decision-making processes. However, concerns about algorithmic bias and fairness have emerged, emphasising the need for comprehensive research in this area.

Understanding Algorithmic Bias in Healthcare

Algorithmic fairness in AI/ML applications is crucial to prevent biases that could disproportionately impact different societal groups. Furthermore, examples from healthcare, such as biassed health cost predictions and disparities in disease outcomes, underscore the importance of fair AI/ML practices in healthcare settings.

Assessing Fairness in AI/ML Models

Researchers use metrics such as equality of opportunity, predictive parity, and statistical parity to assess fairness in ML models. Subsequently, they commonly apply pre-processing techniques like reweighing and data imputation to mitigate bias and improve fairness in healthcare applications.

Mitigating Bias in Healthcare AI/ML

Studies have explored pre-processing, in-processing, and post-processing methods to address bias in ML models. Furthermore, techniques such as recalibration and reweighing have shown promise in improving fairness and reducing disparities in healthcare predictions.

Future Research and Recommendations

Future research should focus on expanding fair ML practices into multi-modality and unstructured data. Consequently, this enhances model interpretability, addressing biases in data collection and governance. Collaborative efforts among AI experts, healthcare professionals, and ethicists are essential to ensure the ethical and equitable use of AI/ML in healthcare settings.

Advancing fair AI/ML practices in healthcare with RWD highlights the need for ongoing research. This promotes trustworthy and inclusive healthcare decision-making processes. Continuous exploration in this field is crucial. Lastly, it highlights the critical nature of ongoing investigations in advancing healthcare AI/ML practices.

The Role of Explainable AI in Healthcare

Explainable AI plays a vital role in healthcare by providing transparency and interpretability in AI/ML models, aiding in understanding how decisions are made and increasing trust in the technology.

Reference url

Recent Posts

Robotic Surgery Portugal: A Landmark Achievement at ULS Viseu Dão-Lafões

By João L. Carapinha

February 12, 2026

Robotic Surgery Portugal Achieves Historic First at ULS Viseu Dão-Lafões Robotic surgery Portugal has reached a new milestone with the successful first procedure at the Local Health Unit (ULS) Viseu Dão-Lafões...
Pharmaceutical Tender Investigation Sparks Regulatory Scrutiny in South Africa
Pharmaceutical Tender Investigation Targets Ascendis, Pharma Q, and Sonke The Competition Commission of South Africa has launched a pharmaceutical tender investigation into manufacturers Ascendis, Pharma Q, and...
Advancements in Uncertainty-Aware Diagnostics with ConfiDx LLM

By João L. Carapinha

February 10, 2026

ConfiDx Ushers in Uncertainty-Aware Diagnostics Uncertainty-aware diagnostics are transforming clinical decision-making through ConfiDx, a large language model (LLM) trained to recognize diagnostic uncertainty in cases with limited cl...