Enhancing Fairness in AI/ML Models for Healthcare Using Real-World Data

By Charmi Patel

May 22, 2024

Introduction

The latest research in artificial intelligence (AI) and machine learning (ML) has completely transformed healthcare industry, providing solutions for risk prediction, disease diagnosis, and outcome forecasting. The integration of AI/ML with real-world data (RWD) has shown promise in improving healthcare decision-making processes. However, concerns about algorithmic bias and fairness have emerged, emphasising the need for comprehensive research in this area.

Understanding Algorithmic Bias in Healthcare

Algorithmic fairness in AI/ML applications is crucial to prevent biases that could disproportionately impact different societal groups. Furthermore, examples from healthcare, such as biassed health cost predictions and disparities in disease outcomes, underscore the importance of fair AI/ML practices in healthcare settings.

Assessing Fairness in AI/ML Models

Researchers use metrics such as equality of opportunity, predictive parity, and statistical parity to assess fairness in ML models. Subsequently, they commonly apply pre-processing techniques like reweighing and data imputation to mitigate bias and improve fairness in healthcare applications.

Mitigating Bias in Healthcare AI/ML

Studies have explored pre-processing, in-processing, and post-processing methods to address bias in ML models. Furthermore, techniques such as recalibration and reweighing have shown promise in improving fairness and reducing disparities in healthcare predictions.

Future Research and Recommendations

Future research should focus on expanding fair ML practices into multi-modality and unstructured data. Consequently, this enhances model interpretability, addressing biases in data collection and governance. Collaborative efforts among AI experts, healthcare professionals, and ethicists are essential to ensure the ethical and equitable use of AI/ML in healthcare settings.

Advancing fair AI/ML practices in healthcare with RWD highlights the need for ongoing research. This promotes trustworthy and inclusive healthcare decision-making processes. Continuous exploration in this field is crucial. Lastly, it highlights the critical nature of ongoing investigations in advancing healthcare AI/ML practices.

The Role of Explainable AI in Healthcare

Explainable AI plays a vital role in healthcare by providing transparency and interpretability in AI/ML models, aiding in understanding how decisions are made and increasing trust in the technology.

Reference url

Recent Posts

AI Chatbot Delusions: Navigating the Risks of Validation in Mental Health

By João L. Carapinha

October 28, 2025

A BMJ article explores the potential for AI chatbot delusions to validate or induce delusional thinking. Emerging evidence shows that individuals with and without previous psychiatric histories have reported distressing delusions after extensive chatbot interactions. It remains uncertain if AI di...
Challenging the Narrative: Pharmaceutical Innovation Funding and Its Complex Dynamics

By João L. Carapinha

October 27, 2025

Pharmaceutical innovation funding in the UK faces scrutiny amid industry claims that low NHS spending deters investments, but this narrative overlooks key drivers like scientific talent, tax incentives, and operational efficiencies rather than drug prices alone. A recent Lancet article critiques ...
NICE Endorses Darolutamide Prostate Cancer Treatment for Improved Patient Access

By HEOR Staff Writer

October 24, 2025

Darolutamide prostate cancer treatment has received a major endorsement from the National Institute for Health and Care Excellence (NICE), which issued final draft guidance recommending darolutamide combined with androgen deprivation therapy (ADT) for adults with hormone-sensitive metastatic pros...