Medical AI Future: Sustainable Reimbursement Strategies

By HEOR Staff Writer

May 6, 2024

Introduction

Artificial Intelligence (AI) in medicine has the potential to significantly enhance patient care, yet its widespread adoption is very dependent on sustainable reimbursement models. In a recent article, authors examine how fee-for-service (FFS) and value-based care (VBC) can facilitate the scaling of medical AI, and they propose strategies to align stakeholder interests.

The Challenge of Medical AI Reimbursement

Medical AI’s promise to enhance patient outcomes faces a significant obstacle: achieving sustainable reimbursement. Although the U.S. healthcare system offers a blueprint for this process, the path to reimbursement is filled with multiple complexities, necessitating the collaboration of diverse stakeholders.

Fee-for-Service: A Traditional Approach

FFS remains a prevalent model where medical AI services are billed similarly to other medical interventions. While this model offers transparency and can provide financial sustainability, it is not without risks, such as potential over utilisation and exacerbation of health disparities.

The Shift to Value-Based Care

VBC is reshaping the reimbursement landscape by focusing on patient outcomes and efficiency. This model accounts for a substantial portion of U.S. healthcare spending and offers fewer regulatory constraints. However, the real-world impact of VBC on cost and quality of care remains mixed.

Emerging Models and Real-World Cases

New reimbursement models are emerging, such as revenue-sharing approaches akin to the Medicare Part B drug payment system. Real-world cases, like autonomous AI for diabetic eye examinations, demonstrate how FFS and VBC can be effectively leveraged for reimbursement.

Accelerating Adoption Through Strategic Reimbursement

To expedite the adoption of medical AI, creators must navigate the reimbursement landscape effectively. This may involve pursuing FFS pathways, such as establishing a Current Procedural Terminology (CPT) code, or integrating into existing VBC frameworks like Merit-Based Incentive Payment Systems/ Healthcare Effectiveness Data and Information Set (MIPS/HEDIS).

Conclusion

The journey towards sustainable reimbursement for medical AI is complex, yet essential for its successful integration into healthcare. By understanding and utilising current FFS and VBC models, stakeholders can ensure that medical AI reaches its full potential in improving patient outcomes.

Reference url

Recent Posts

Paving the Way for Digital Health Technologies: NICE’s Bold New Strategy for the NHS

By HEOR Staff Writer

October 9, 2025

The National Institute for Health and Care Excellence (NICE) is expanding its technology appraisals programme, and starting April 2026, this will include digital health technologies that are placed on an equal legal footing with medicines in the NHS. This initiative forms part of the NHS 10-year ...
Health Misinformation Autism: The Dangers of Politicized Science in Vaccine and Drug Discourse

By João L. Carapinha

October 7, 2025

The BMJ article “Tylenol, vaccines, and autism: the medical mayhem of the MAGA methodologists” argues that political and ideological actors, notably aligned with the MAGA movement, are promoting health misinformation about autism, vaccines, and paracetamol. They amplify preliminary, misinterprete...
Lurbinectedin SCLC Therapy: FDA Approval and Its Economic Implications

By João L. Carapinha

October 6, 2025

The U.S. Food and Drug Administration (FDA) has recently approved lurbinectedin SCLC therapy in combination with atezolizumab, or with atezolizumab and hyaluronidase-qvfc, for the treatment of adult patients with extensive-stage small cell lung cancer (ES-SCLC). This regulatory decision reflects ...