Machine Learning to Improve Diagnosis of Long QT Syndrome

By Staff Writer

March 25, 2024

Introduction:

Long QT Syndrome (LQTS) is a cardiac disorder associated with sudden arrhythmic death. Traditional methods of detection, such as resting electrocardiography (ECG), are often inadequate as they fail to identify 30% to 50% of patients with concealed LQTS. However, recent developments in artificial intelligence (AI) and machine learning (ML) show promise in improving LQTS diagnosis accuracy.

Genetic Testing in LQTS Diagnosis:

Genetic testing plays a crucial role in diagnosing LQTS. A positive result is present in 80% of patients with a definite diagnosis of LQTS. Most cases that are genotype-positive (90%-95%) have culprit variants in the KCNQ1 or KCNH2 genes. The identification of a positive genotype in a patient has significant implications for their risk of arrhythmias, lifestyle recommendations, genetic counselling, and pharmacologic therapy. However, it’s important to note that genetic testing alone is not sufficient for diagnosing LQTS, especially in cases of concealed LQTS.

Machine Learning and LQTS Diagnosis:

ML, particularly convolutional neural networks (CNNs), is increasingly being applied to detect LQTS on ECGs. It can complement genetic testing, providing a more comprehensive and accurate diagnostic approach. These advanced AI methodologies offer a more accurate and efficient approach to identifying LQTS, even in patients with concealed or mild symptoms.

CNN Model Development and Testing:

A recent study tested a CNN model that identifies LQTS on baseline ECGs. The researchers developed this model for a diverse group of patients suspected of having LQTS. Furthermore, the model can differentiate between the most common LQTS genetic types. These types specifically involve variants in KCNQ1 or KCNH2.

Figure 1. Performance of a Deep Learning Model for LQTS
and Concealed LQTS Detection

Model Validation and Performance:

The CNN model demonstrated high accuracy and sensitivity in detecting LQTS and distinguishing between KCNQ1 and KCNH2 variants. The model’s performance was robust across different centres, ages, sexes, and ethnicities. It outperformed QTc intervals measured by arrhythmia experts, particularly in identifying LQTS in ECGs with normal or borderline QTc intervals.

Figure 2. Performance of a Deep Learning Model for LQTS and Concealed LQTS Detection by Validation Subgroup

Clinical Applications of CNNs in ECG Interpretation:

The use of CNNs in ECG interpretation could revolutionise LQTS diagnosis. ML can detect hidden features on ECGs, even in cases of concealed LQTS. This technology could be crucial for screening, helping to identify patients who may need further testing or are at risk of QT-mediated arrhythmias when exposed to QT-prolonging drugs. ML approaches are characterised by their lower requirement for knowledge, reduced time and labour intensity, and independence from other clinical information, unlike human readers. These methods can be used in small, underserved communities, where LQTS may be more common.

Conclusion:

CNNs are effective in detecting LQTS and differentiating between the two most common genotypes. Broader validation over an unselected general population may support the broad application of this model to stratify torsade de pointes risk in patients with suspected LQTS.

Reference url

Recent Posts

prior authorization elimination
   

Prior Authorization Elimination: Is Optum Rx moving towards Access Efficiency?

🚀 Are prior authorizations holding back patient access to crucial medications?

Optum Rx is set to eliminate prior authorizations for about 80 drugs starting May 1, 2025, streamlining access to treatments for chronic conditions like cystic fibrosis and asthma. This significant move is aimed at reducing unnecessary administrative burdens, ultimately enhancing patient care.

Curious about the implications for the healthcare system and potential cost savings? Dive into the full article for an in-depth look!

#SyenzaNews #healthcare #HealthEconomics

South Africa cannabis regulations
     

South Africa Cannabis Regulations: Government Withdraws Ban for New Framework Development

🌿 Curious about the future of cannabis in South Africa?

Recent developments have seen the government retract its ban on hemp and cannabis food products, signaling a major shift towards a more responsible regulatory framework. With a focus on stakeholder consultation, this move aims to foster industry growth while prioritizing public health.

Explore how these changes are set to reshape the landscape of the cannabis industry in South Africa and beyond!

#SyenzaNews #HealthEconomics #MarketAccess

lumped parameter model
      

Advancing Heart Transplantation: The Role of the Lumped Parameter Model

🫀 How can a new model improve heart transplantation?

A recent study introduces a **lumped parameter model (LPM)** designed to enhance the evaluation of donor heart function during ex vivo perfusion, aiming to boost donor heart utilization and reduce primary graft dysfunction rates. This innovative approach holds promise for improving clinical decision-making and outcomes in heart transplantation.

Dive into the article for insightful details on how LPMs could reshape the future of cardiac care!

#SyenzaNews #HealthcareInnovation #HealthEconomics #Innovation

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2025 Syenza™. All rights reserved.