Evaluating Machine Learning in Health Economics

By Sumona Bose

January 22, 2024

Introduction

Advances in Machine Learning and Artificial Intelligence (AI) have the potential to transfigure the healthcare industry, offering tremendous benefits to patients. While predictive analytics using ML are already widely used in healthcare operations and care delivery, there is growing interest in exploring how ML can be applied to Health Economics and Outcomes Research (HEOR). The International Society for Pharmacoeconomics and Outcomes Research (ISPOR) established an emerging good practices task force specifically focused on the application of ML in HEOR. The task force identified five key areas where ML could enhance HEOR methodologies.

Machine Learning Functions

The first area is cohort selection, where ML can help identify samples with greater specificity in terms of inclusion criteria. This can lead to more accurate and targeted research, ultimately improving patient outcomes. The second area is the identification of independent predictors and covariates of health outcomes. ML algorithms can analyze large datasets to identify factors that contribute to specific health outcomes, providing valuable insights for researchers and policymakers.

Predictive analytics of health outcomes is another area where ML can make a significant impact. ML algorithms can analyze high-cost or life-threatening health outcomes, helping healthcare providers and policymakers make informed decisions and allocate resources effectively. The fourth area is causal inference, where ML methods such as targeted maximum likelihood estimation or double-debiased estimation can help produce reliable evidence more quickly. This can accelerate the research process and enable faster decision-making.

HEOR and Machine Learning: PALISADE Checklist

ML can be applied to the development of economic models, reducing structural, parameter, and sampling uncertainty in cost-effectiveness analysis. By leveraging ML algorithms, researchers can improve the accuracy and reliability of economic models, leading to more robust and informed decision-making. Overall, ML facilitates HEOR through the meaningful and efficient analysis of big data. However, there is a need for transparency in how ML methods deliver solutions, particularly in unsupervised circumstances. The lack of transparency increases the risk to providers and decision-makers when using ML results.

To address this issue, the task force developed the PALISADE Checklist. This checklist serves as a guide for balancing the potential applications of ML with the need for transparency in methods development and findings. By following this checklist, researchers and decision-makers can ensure that ML solutions are both useful and transparent in healthcare analytics.

Conclusion

As AI continues to advance, it is crucial for the healthcare industry to embrace these technologies and leverage their potential to improve patient outcomes and drive value-based healthcare. By incorporating ML into HEOR methodologies, researchers can gain valuable insights, enhance decision-making, and strengthen healthcare systems.

Reference url

Recent Posts

oral health Africa
    

Oral Health in Africa: Promoting Collaborative Solutions

🦷 Is oral health taking a back seat in public health discussions in Africa?

A new article reveals alarming statistics about the high prevalence of untreated dental diseases across the continent and a critical shortage of oral health professionals. It emphasizes the urgent need for collaborative action among healthcare providers and policy-makers to integrate oral health into broader public health frameworks.

Discover how strengthening partnerships can pave the way for improved health outcomes and resource allocation in oral health.

#SyenzaNews #globalhealth #HealthEconomics

tislelizumab NSCLC treatment
        

Early Benefit Assessment of Tislelizumab NSCLC Treatment: Insights and Implications

🧐 How is the evolving treatment landscape for NSCLC affecting patient access to tislelizumab?

The German Federal Joint Committee (G-BA) has launched an early benefit assessment for tislelizumab as a second-line treatment for adults with advanced NSCLC. This assessment notably focuses on PD-L1 negative patients and highlights the need for additional data to substantiate its value amidst a shifting emphasis on first-line immunotherapy.

Explore the nuances of this assessment and its implications for future research and market access in the full article.

#SyenzaNews #oncology #MarketAccess

colorectal cancer screening
    

Advances in Colorectal Cancer Screening: Access and Cost

🚀 Is blood-based screening redefining colorectal cancer detection?

The Shield blood test offers a non-invasive alternative to colonoscopy—boosting screening uptake, but raising questions around effectiveness and value.

🔍 Discover how this innovation could reshape patient care, payer strategy, and health system costs.

#SyenzaNews #HealthcareInnovation #CostEffectiveness #DigitalTransformation

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2025 Syenza™. All rights reserved.