AI’s Approaches to Maternal and Neonatal Health in Low Resource Settings

By Sumona Bose

December 23, 2023

Introduction

A significant challenge faced by hospitals and medical practitioners in low- and middle-income countries is the lack of sufficient healthcare facilities for timely medical diagnosis of chronic and deadly diseases. Maternal and neonatal morbidity due to non-communicable and nutrition-related diseases is a serious public health issue that leads to several deaths every year. Detecting these conditions at their early stages is challenging, putting patients at risk of developing severe conditions over time. However, the advent of Artificial Intelligence (AI) has opened up new possibilities for improving maternal and neonatal health. This article will give an overview on AI’s Approaches to Maternal and Neonatal Health in Low Resource Settings.

AI holds Promise for Maternal and Neonatal Health

AI has emerged as a practical assistive tool in various healthcare sectors, but its application in maternal and neonatal health is still in its nascent stages. One example of how AI can be used in low-resource settings is in maternal health and diagnostics services. In these settings, access to proper healthcare infrastructure and professionals is limited, making it difficult to provide holistic care to pregnant women and their children. However, AI technologies such as digital chatbots and support groups can aid in maternal and neonatal health monitoring and management. These technologies can engage users in follow-up questions about their health in their desired language, helping to disperse basic health information.

Figure 1: Focus Areas on Role of AI in complimenting maternal health

 

Challenges and Solutions for AI

Explainable Artificial Intelligence (XAI) or Dependable AI (DAI) can provide insights into the decision-making process of AI models. This level of explainability increases the confidence that medical practitioners and AI researchers have in the system, leading to broader adoption of AI in the healthcare field. By understanding why someone has been classified as ill or otherwise, the perception of AI models as a “black box” can be changed, making them more scalable and employable. XAI can be merged with smart healthcare systems that incorporate the Internet of Things, cloud computing, and AI, particularly in the fields of maternal and neonatal health. These intelligent healthcare systems can be utilized for various purposes, including disease diagnosis and treatment selection.

In some crucial small sample size healthcare problems where large datasets are not available, Few-shot learning or Zero-shot learning can be used to train AI models. These learning frameworks utilize domain information to reach medical decisions or predictions, making them efficient tools for doctors to handle rare medical conditions and problems that require years of experience.

Conclusion

Improving maternal and newborn health requires bringing speedy diagnosis and treatment to point-of-care settings in developing nations with limited resources.

Reference url

Recent Posts

WHO Investment Round 2023
    

WHO Investment Round: Securing Funding with Transparency Challenges

🌍 How can global health initiatives thrive with increased funding?

The WHO Investment Round is a pivotal initiative striving to secure $7.1 billion for essential health programs from 2025 to 2028. While achieving 53% of this target via diverse donor engagement, transparency in funding remains a challenge. Discover how these efforts can accelerate progress towards universal health coverage and tackle critical health issues like malaria and cervical cancer!

#SyenzaNews #globalhealth #universalhealthcoverage #healthcare #innovation

HPV vaccination South Africa
    

HPV vaccination South Africa: Cervical Cancer Prevention

🌍 How is South Africa leading the charge against cervical cancer?

Since launching its HPV vaccination program, the country has made remarkable strides in protecting future generations. With impressive coverage rates and a focus on at-risk populations, South Africa serves as a global model for effective public health strategies. Discover how this initiative not only combats cervical cancer but also addresses broader health concerns.

#SyenzaNews #HealthTech #GlobalHealth #HealthcareInnovation #CervicalCancer #HPVVaccination

diabetes diagnosis retinal images
         

Diabetes Diagnosis through Retinal Imaging and Deep Learning

🤔 How can deep learning transform diabetes diagnosis?

Discover the innovative DiaNet v2 model, which leverages retinal images to accurately diagnose diabetes with over 92% accuracy! This non-invasive approach has the potential to improve health outcomes, especially in regions where traditional methods are less accessible. Join us in exploring how technology can revolutionise diabetes management.

#SyenzaNews #AIinHealthcare #DigitalHealth #HealthcareInnovation #DiabetesManagement

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

© 2024 Syenza™. All rights reserved.