AlphaMissense and Genetic Sequencing

By Michael Awood

September 24, 2023

Artificial intelligence (AI) in healthcare continues to show its vast capabilities. Many examples have shown how they deploy it as a predictive tool for early disease identification. This has enabled the provision of early and effective treatment where necessary. But could we do this earlier? And how early could healthcare implement a tool like this? 

Machine learning algorithms have helped predict harmful genetic changes. Thus, healthcare benefits from this through improved rare disease diagnosis and targeted treatments. In a recent paper, researchers explore how to use this in genetic sequencing.

Genome sequencing has revealed over 4 million missense variants. These are genetic variants that alter the amino acid sequence of proteins. However, researchers have clinically classified only about 2% of these variants as pathogenic or benign. So, the challenge is to predict accurately how the remaining variants will affect protein function and the health of the organism.

To address this, researchers have developed machine-learning approaches that exploit patterns in biological data. Alphafold 1 is a protein structure prediction tool designed by DeepMind. It ranked 13th in Critical Assessment Structure Prediction (CASP). But, in 2020, the researchers made significant advancements to the model, which produced Alphafold 2. In fact, it scored 90 out of 100 on the Global Distance Test (GDT). This was a powerful achievement. For reference, a score of 100 shows a complete match of proteins that formed naturally.

As a result of adapting the AlphaFold models, researchers designed AlphaMissense. This was specific for human and primate databases. It prevents circularity by utilizing weak labels from population frequency data and unsupervised protein language modelling. Amino acid sequences are used to predict the pathogenicity of all single amino acid changes at a position in the sequence. They trained it in two stages. They trained the network to predict single-chain structure and model protein language in the first stage. In the second stage, they fine-tune the model to classify variant pathogenicity on human proteins.

AlphaMissense found new disease variants and measured their effects on clinical annotation and experimental tests. In contrast to other models, it excelled in distinguishing between harmful and harmless gene mutations. Additionally, it achieved state-of-the-art performance across all curated clinical benchmarks.

Because of these advances, researchers created a dataset of 71 million missense variant predictions for the human proteome using the model. Clinicians could use these resources to prioritise variants for rare disease diagnostics, inform studies of complex trait genetics, and they could serve as a starting point for designing and interpreting further experiments across the human proteome. 

AI and machine learning are poised to play a crucial role in healthcare by enabling accurate prediction of variant pathogenicity. Models like AlphaMissense could speed up our understanding of the molecular effects of variants on protein function. This will help find genes that cause diseases and improve the diagnosis of rare genetic diseases.

Reference url

Recent Posts

AAP childhood obesity guidelines
     

Caution Advised: Conflicts in AAP Childhood Obesity Guidelines

Are childhood obesity guidelines driving us toward conflict? 🌍 The recent AAP guidelines suggest weight loss medications for children as young as eight, but undisclosed financial ties to drug manufacturers raise serious questions about credibility.

In this article, we dive into the implications of these conflicts and the evidence gaps surrounding pharmaceutical interventions in pediatric care. Transparency and trust are crucial when it comes to the health of our children—let’s explore what needs to change.

Read more to find out how these guidelines could impact families, clinicians, and healthcare policy.

#SyenzaNews #HealthcareInnovation #HealthcarePolicy

implantable glucose device
         

T1 Diabetes Care with an Implantable Glucose Device

🚀 Are we on the brink of a diabetes breakthrough?

A newly developed implantable glucose device from MIT could revolutionize diabetes management, providing an autonomous solution to prevent life-threatening hypoglycemic episodes. This innovative device combines continuous glucose monitoring with responsive hormone delivery, potentially transforming patient care by reducing the need for constant oversight.

Curious about how this technology could reshape diabetes outcomes and healthcare economics? Dive into the full article for a closer look!

#SyenzaNews #HealthTech #HealthEconomics #Innovation

federated learning governance
      

Federated Learning Governance in Healthcare: A Framework for Ethical and Effective Implementation

🔍 Have you considered how federated learning governance can revolutionize healthcare data collaboration?

In our latest article, we explore the critical principles of federated learning governance, emphasizing its role in managing decentralized health data while protecting patient privacy and improving research quality. Learn about the actionable strategies healthcare organizations can implement to navigate the unique challenges that come with this innovative approach.

Dive deeper into the world of federated learning in healthcare and unlock its potential for ethical and effective data use!

#SyenzaNews #AIinHealthcare #DigitalHealth

When you partner with Syenza, it’s like a Nuclear Fusion.

Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in health policy, health economics, systems analysis, public finance, business, and project management. You’ll also feel our high-impact global and local perspectives with cultural intelligence.

SPEAK WITH US

CORRESPONDENCE ADDRESS

1950 W. Corporate Way, Suite 95478
Anaheim, CA 92801, USA

JOIN NEWSLETTER

© 2025 Syenza™. All rights reserved.