Use of AI in Genetic Diagnosis: Identifying Rare Diseases
By Danélia Botes
May 17, 2024
Introduction
Every year, numerous children are born with severe genetic disorders, with a considerable number remaining undiagnosed due to the complexity of identifying causative genetic variants. The emergence of artificial intelligence (AI) in genetic diagnosis offers a promising avenue for addressing these challenges, pushing the boundaries of precision medicine.
Understanding the Diagnostic Challenge
Genetic disorders, often resulting from single-gene mutations, present a significant diagnostic challenge. Despite modern bioinformatics tools, the process of pinpointing the exact variant responsible for a disease remains a complex task, demanding both time and extensive knowledge. Despite the advent of sophisticated bioinformatics tools, the diagnostic rate for genetic disorders hovers between 30 and 40%. This complexity underscores the need for more efficient diagnostic methodologies.
The Power of AI in Genetic Analysis
AI systems, such as AI-MARRVEL (AIM), have been developed to enhance the diagnostic process for Mendelian disorders. These systems leverage patient clinical features and sequencing profiles, offering a sophisticated approach to variant prioritisation. AIM, in particular, is trained on a more than 3.5 million variant data points and curated by certified experts, embodying a significant leap forward in genetic diagnostics.
Navigating the Limitations of Current Tools
While AI systems like AIM mark a significant advancement, they are not without limitations. The inability to analyse certain types of genetic variations and a focus on coding variants restrict their scope. However, these challenges present opportunities for further innovation and integration of more comprehensive analytical tools.
The Future of Genetic Diagnosis
AI in genetic diagnosis is not just a theoretical concept but a practical tool with a web interface for real-world application. It has the potential to truly enhance the periodic reanalysis of undiagnosed cases, making it a feasible and cost-effective option for many. As AI continues to evolve, its integration into clinical practice promises to enhance patient outcomes and set a new norm in genetic medicine.
🔍 Discover the cost-effectiveness of pharmacogenetic screening in treating Major Depressive Disorder (MDD).
This approach could save costs and improve patient outcomes in the Spanish National Health System. Read more to understand the potential benefits and future implications. 🌐💡
#SyenzaNews #Pharmacogenetics #MajorDepression #CostEffectiveness #HealthcareInnovation
🌟 Healthy Ageing Index and Assessment of Age-Related Outcomes 🌟
📊 Unlocking the Secrets of Healthy Ageing in Singapore! Discover the significance of the Healthy Ageing Index (HAI) in predicting age-related outcomes! Learn how this tool can help promote healthy ageing and improve quality of life. 👵👴
Thailand’s healthcare system is a beacon of efficiency and effectiveness. Achieving Universal Health Coverage in 2002, the country has made remarkable strides in health outcomes, despite spending less compared to other upper-middle-income countries.
Learn how Thailand’s use of Health Technology Assessment (HTA) has played a crucial role in this success and the future steps to address current challenges. 🌍💉
When you partner with Syenza, it’s like a Nuclear Fusion.
Our expertise are combined with yours, and we contribute clinical expertise and advanced degrees in
health policy, health economics, systems analysis, public finance, business, and project management.
You’ll also feel our high-impact global and local perspectives with cultural intelligence.